概率论单选4星

数学



单选题 (共 3 题 ),每题只有一个选项正确
设 $X_1, X_2, \cdots, X_n(n \geqslant 2)$ 为来自总体 $X \sim N(0,1)$ 的简单随机样本, $\bar{X}$ 为样本均值, $S^2$ 为样本方差,则
$\text{A.}$ $n \bar{X} \sim N(0,1)$ $\text{B.}$ $n S^2 \sim \chi^2(n)$ $\text{C.}$ $\frac{(n-1) \bar{X}}{S} \sim t(n-1)$ $\text{D.}$ $\frac{(n-1) X_1^2}{\sum_{i=2}^n X_i^2} \sim F(1, n-1)$

设 $X_1, X_2, \cdots, X_n$ 为来自总体 $X \sim N\left(0, \sigma^2\right)$ 的简单随机样本, 样本均值与样本方差分别为 $\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i, S^2=\frac{1}{n-1} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2$, 则 $D\left(\sqrt{n} \bar{X}^2-S^2\right)=(\quad)$
$\text{A.}$ $2\left(\frac{1}{n}-\frac{1}{n-1}\right) \sigma^4$ $\text{B.}$ $(n-1) \sigma^2$ $\text{C.}$ $\left(\frac{1}{n}+\frac{1}{n-1}\right) \sigma^2$ $\text{D.}$ $2\left(\frac{1}{n}+\frac{1}{n-1}\right) \sigma^4$

设 $X_1, X_2, X_3$ 相互独立且 $E\left(X_i\right)=1, D\left(X_i\right)=1 \quad(i=1,2,3)$, 则对于任意给定的 $\varepsilon>0$ 由切比雪夫不等式可得
$\text{A.}$ $P\left(\left|\sum_{i=1}^3 X_i-1\right| < \varepsilon\right) \geq 1-\varepsilon^{-2}$ $\text{B.}$ $P\left(\left|\frac{1}{3} \sum_{i=1}^3 X_i-1\right| < \varepsilon\right) \geq 1-\varepsilon^{-2}$ $\text{C.}$ $P\left(\left|\sum_{i=1}^3 X_i-3\right| < \varepsilon\right) \geq 1-\varepsilon^{-2}$ $\text{D.}$ $P\left(\left|\sum_{i=1}^3 X_i-3\right| < \varepsilon\right) \geq 1-3 \varepsilon^{-2}$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。