单选题 (共 3 题 ),每题只有一个选项正确
设 $A, B$ 均为 $n$ 阶可逆方阵, 则下列等式成立的是
$\text{A.}$ $\left|( A B )^{-1}\right|=| A |^{-1}| B |^{-1}$;
$\text{B.}$ $|- A B |=| A B |$;
$\text{C.}$ $\left|A^2-B^2\right|=|A+B \| A-B|$;
$\text{D.}$ $|2 A|=2|A|$.
已知 $3 \times 4$ 矩阵 $A$ 的行向量组线性无关,则秩 $\left( A ^{ T }\right)$ 等于( )
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
设矩阵 $A =\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right)$ ,则 $A ^{-1}$ 等于
$\text{A.}$ $\left(\begin{array}{ccc}\frac{1}{3} & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 1\end{array}\right)$
$\text{B.}$ $\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & \frac{1}{3}\end{array}\right)$
$\text{C.}$ $\left(\begin{array}{lll}\frac{1}{3} & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{2}\end{array}\right)$
$\text{D.}$ $\left(\begin{array}{lll}\frac{1}{2} & 0 & 0 \\ 0 & \frac{1}{3} & 0 \\ 0 & 0 & 1\end{array}\right)$