试卷具体名是称

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 4 题,每小题 5 分,共 50 分,每题只有一个选项正确)
下列结论正确的是
$\text{A.}$ 若 $\sum a_n x^n$ 的收敛半径为 $R$ ,则 $\sum\left(a_n x^n\right)^{\prime}$ (导数)的收敛半径也是 $R$ $\text{B.}$ 若 $f(x)$ 在 $x=x_0$ 有任意阶导数,则有$f(x)=\sum_{n=0}^{\infty} \frac{f^{(n)}\left(x_0\right)}{n!}\left(x-x_0\right)^n $ $\text{C.}$ 若 $\sum a_n x^n$ 的收敛半径为 $R$, 则 $\lim _{n \rightarrow \infty}\left|\frac{a_n}{a_{n+1}}\right|=R$ $\text{D.}$ 设 $\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n x\right)$ 是周期为 $2 \pi$ 的函数 $f(x)$的傅里叶级数,则在 $f(x)$ 的定义域内,有 $ f(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty}\left(a_n \cos n x+b_n \sin n x\right) $

设函数 $f(x)$ 是 $(-\infty, \infty)$ 上以 $2 \pi$ 为周期的周期函数,且在区间 $(0,2 \pi]$ 上有 $f(x)=x^2(0 < x \leq 2 \pi)$ ,则 $f(x)$ 的傅里叶系数中 $a_0$ 的值为
$\text{A.}$ $\frac{2 \pi^2}{3}$ $\text{B.}$ $\frac{4 \pi^2}{3}$ $\text{C.}$ $\frac{8 \pi^2}{3}$ $\text{D.}$ $\frac{10 \pi^2}{3}$

设函数 $f(x)=\left\{\begin{array}{ll}x, & 0 \leq x < \frac{1}{2}, \\ 1, & \frac{1}{2} \leq x \leq 1\end{array}\right.$ 的正弦级数 $\sum_{n=1}^{+\infty} b_n \sin n \pi x$的和函数为 $S(x)$ ,其中
$$
b_n=2 \int_0^1 f(x) \sin n \pi x \mathrm{~d} x(n=1,2, \cdots),
$$

则 $S\left(\frac{7}{2}\right)$ 和 $S(7)$ 的值分别为
$\text{A.}$ $\frac{3}{4}, 0$ $\text{B.}$ $-\frac{3}{4}, 0$ $\text{C.}$ $\frac{3}{4}, 1$ $\text{D.}$ $-\frac{3}{4}, 1$

已知函数 $f(x)=x^2, 0 \leq x \leq 1$ ,记 $S(x)=\sum_{n=1}^{\infty} b_n \sin n \pi x$ ,其中 $b_n=2 \int_0^1 f(x) \sin n \pi x \mathrm{~d} x(n=1,2, \cdots)$ ,则当 $x \in(1,2)$ 时, $S(x)=(\quad)$
$\text{A.}$ $x^2$ $\text{B.}$ $-x^2$ $\text{C.}$ $(x-2)^2$ $\text{D.}$ $-(x-2)^2$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。