aaaa

数学

本试卷总分150分,考试时间120分钟。
注意事项:
答卷前, 考生务必将自己的姓名、准考证号填写在答题卡上。
回答选择题时, 选出每小题答案后, 用铅笔把答题卡上对应题目的答案标号涂黑,写在本试卷上无效。
考试结束后, 将本试卷和答题卡一并交回。
本试卷由kmath.cn自动生成。
学校:_______________ 姓名:_____________ 班级:_______________ 学号:_______________


一、单选题 (共 3 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设级数 $\sum_{i=1}^{\infty} u_n$ 收敛,则必收敛的级数为
$\text{A.}$ $\sum_{n=1}^{\infty}(-1)^n \frac{u_n}{n}$ $\text{B.}$ $\sum_{n=1}^{\infty} u_n^2$ $\text{C.}$ $\sum_{n=1}^{\infty}\left(u_{2 n-1}-u_{2 n}\right)$ $\text{D.}$ $\sum_{n=1}^{\infty}\left(u_n+u_{n+1}\right)$

设 $n$ 维列向量组 $\alpha_1, \cdots, \alpha_m(m < n)$ 线性无关,则 $n$ 维列向量组 $\beta_1, \cdots, \beta_m$ 线性无关的充分必要条件为
$\text{A.}$ 向量组 $\alpha_1, \cdots, \alpha_m$ 可由向量组 $\beta_1, \cdots, \beta_m$ 线性表示 $\text{B.}$ 向量组 $\beta_1, \cdots, \beta_m$ 可由向量组 $\alpha_1, \cdots, \alpha_m$ 线性表示 $\text{C.}$ 向量组 $\alpha_1, \cdots, \alpha_m$ 与向量组 $\boldsymbol{\beta}_1, \cdots, \boldsymbol{\beta}_m$ 等价 $\text{D.}$ 矩阵 $A=\left(\alpha_1, \cdots, \alpha_m\right)$ 与矩阵 $B=\left(\beta_1, \cdots, \beta_m\right)$ 等价

设二维随机变量 $(X, Y)$ 服从二维正态分布,则随机变量 $\xi=X+Y$ 与 $\eta=X-Y$ 不相关的充分必要条件为
$\text{A.}$ $E(X)=E(Y)$ $\text{B.}$ $E\left(X^2\right)-[E(X)]^2=E\left(Y^2\right)-[E(Y)]^2$ $\text{C.}$ $E\left(X^2\right)=E\left(Y^2\right)$ $\text{D.}$ $E\left(X^2\right)+[E(X)]^2=E\left(Y^2\right)+[E(Y)]^2$

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷