一、解答题 ( 共 4 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
计算二重积分 $I=\iint_D r^2 \sin \theta \sqrt{1-r^2 \cos 2 \theta} \mathrm{d} r \mathrm{~d} \theta$, 其中
$$
D=\left\{(r, \theta) \mid 0 \leqslant r \leqslant \sec \theta, 0 \leqslant \theta \leqslant \frac{\pi}{4}\right\} .
$$
计算 $I=\int_0^1 \mathrm{~d} x \int_{1-x}^{\sqrt{1-x}} \frac{x+y}{x^2+y^2} \mathrm{~d} y$.
三阶矩阵 $A=\left(a_{i j}\right)_{3 \times 3}$ 与 $B=\left(\begin{array}{ccc}1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 10\end{array}\right)$ 满足 $A B=O$.已知 $a_{22}=-3$, 且 $(1,3,2)^T$ 为矩阵 $A$ 的特征向量.
(I) 求矩阵 $A$ 的全部特征值和特征向量;
(II) 求矩阵 $A$ 以及 $(E+A)^{2020}$;
(III) 已知 $\beta=(2,6,4)^T$, 求线性方程组 $A x=\beta$ 的通解.
设总体 $(X, Y)$ 的分布函数为
$$
F(x, y)= \begin{cases}0, & x < 0 \text { 或 } y < \theta, \\ p\left[1-\mathrm{e}^{-(y-\theta)}\right], & 0 \leqslant x < 1, y \geqslant \theta, \\ 1-\mathrm{e}^{-(y-\theta)}, & x \geqslant 1, y \geqslant \theta .\end{cases}
$$
其中 $p, \theta$ 为末知参数, 且 $0 < p < 1$.
(I) 求 $X$ 的概率分布和 $Y$ 的概率密度, 并判别 $X$ 和 $Y$ 的独立性;
(II) 求 $Z=X+Y$ 的概率密度 $f_Z(z)$.