数学



单选题 (共 3 题 ),每题只有一个选项正确
设 $\lim _{x \rightarrow 1} \frac{f(x)}{m x}=1$, 则
$\text{A.}$ $f(1)=0$ $\text{B.}$ $\lim _{x \rightarrow 1} f(x)=0$ $\text{C.}$ $f^{\prime}(1)=1$ $\text{D.}$ $\lim _{x \rightarrow 1} f^{\prime}(x)=1$

设函数 $f(x)$ 在 $x=0$ 处连续, 下列命题错误的是
$\text{A.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f(0)=0$. $\text{B.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)+f(-x)}{x}$ 存在, 则 $f(0)=0$. $\text{C.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在. $\text{D.}$ 若 $\lim _{x \rightarrow 0} \frac{f(x)-f(-x)}{x}$ 存在, 则 $f^{\prime}(0)$ 存在.

已知函数 $f(x), g(x)$ 可导, 且 $f^{\prime}(x)>0, g^{\prime}(x) < 0$, 则
$\text{A.}$ $\int_{-1}^0 f(x) g(x) \mathrm{d} x>\int_0^1 f(x) g(x) \mathrm{d} x$. $\text{B.}$ $\int_{-1}^0|f(x) g(x)| \mathrm{d} x>\int_0^1|f(x) g(x)| \mathrm{d} x$. $\text{C.}$ $\int_{-1}^0 f[g(x)] \mathrm{d} x>\int_0^1 f[g(x)] \mathrm{d} x$. $\text{D.}$ $\int_{-1}^0 f[f(x)] \mathrm{d} x>\int_0^1 g[g(x)] \mathrm{d} x$.

非会员每天可以查看15道试题。 开通会员,海量试题无限制查看。

  • 无限看试题

  • 下载试题

  • 组卷
开通会员

试卷二维码

分享此二维码到群,让更多朋友参与

试卷白板

试卷白板提供了一个简单的触摸书写板,可供老师上课、或者视频直播时, 直接利用白板给学生讲解试题,如有意见,欢迎反馈。

他的试卷