单选题 (共 5 题 ),每题只有一个选项正确
设 $f(x)=x \sin \frac{1}{x}$, 则 $\lim _{x \rightarrow \infty} f(x)=$
$\text{A.}$ 0
$\text{B.}$ 1
$\text{C.}$ $\infty$
$\text{D.}$ 不存在
设 $f(x)=\left\{\begin{array}{ll}\frac{\left(x^3-1\right) \sin x}{|x|\left(1+x^2\right)}, & x \neq 0, \\ 0, & x=0,\end{array} x \in(-\infty,+\infty)\right.$, 则
$\text{A.}$ $f(x)$ 在 $(-\infty,+\infty)$ 内有界
$\text{B.}$ 存在 $X>0$, 当 $|x| < X$ 时, $f(x)$ 有界, 当 $|x|>X$ 时, $f(x)$ 无界
$\text{C.}$ 存在 $X>0$, 当 $|x| < X$ 时, $f(x)$ 无界, 当 $|x|>X$ 时, $f(x)$ 有界
$\text{D.}$ 对任意 $X>0$, 当 $|x| \leqslant X$ 时, $f(x)$ 有界, 但在 $(-\infty,+\infty)$ 内无界
设函数 $f(x)=\left\{\begin{array}{cc}g(x) \cos \frac{1}{x^2}, & x \neq 0, \\ 0, & x=0,\end{array}\right.$ 且 $g(0)=g^{\prime}(0)=0$, 则 $f(x)$ 在点 $x=0$ 处
$\text{A.}$ 连续但不可导.
$\text{B.}$ 可导但 $f^{\prime}(0) \neq 0$.
$\text{C.}$ 极限存在但不连续.
$\text{D.}$ 可微且 $\left.\mathrm{d} f(x)\right|_{x=0}=0$.
设 $y=f(x)$ 可导, 则当 $\Delta x \rightarrow 0$ 时, $\Delta y-d y$ 是 $\Delta x$ 的
$\text{A.}$ 高阶无穷小
$\text{B.}$ 等价无穷小
$\text{C.}$ 同阶无穷小
$\text{D.}$ 低阶无穷小
$x \rightarrow 0^{+}$时, 下列无穷小量的阶数从低到高的排序是 ( )
(1). 由 $\left\{\begin{array}{l}x=t^3 \\ y=t^2\end{array}\right.$ 确定的函数 $y=f(x)$
(2). $\ln \left(-x+\sqrt{1+x^2}\right)$
(3). $\int_0^{\sin x} \ln \left(1+\sqrt{t^2}\right) \mathrm{d} t$
(4). $\frac{1-\cos \sqrt{x}}{\sqrt[4]{x}}$
$\text{A.}$ (1)(4)(2)(3)
$\text{B.}$ (2)(4)(1)(3)
$\text{C.}$ (1)(4)(3)(2)
$\text{D.}$ (4)(2)(1)(3)
填空题 (共 1 题 ),请把答案直接填写在答题纸上
设 $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cl}\mathrm{e}^{\mathrm{x}}(\sin \mathrm{x}+\cos \mathrm{x}) & \mathrm{x} \geq 0 \\ \operatorname{b \arctan} \frac{1}{\mathrm{x}} & \mathrm{x} < 0\end{array}\right.$ 是连续函数, 则 $\mathrm{b}=$