科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

微积分(1)

数学

一、单选题 (共 4 题,每小题 5 分,共 50 分,每题只有一个选项正确)
若 $\lim _{x \rightarrow 0} \frac{a x^2+b x+1-e^{x^2-2 x}}{x^2} =2$, 则
$\text{A.}$ $a={5}, b=-2$. $\text{B.}$ $a=-2, b=5 $ $\text{C.}$ $a={2}, b=0$. $\text{D.}$ $a={4}, b=-4$.


函数 $f(x)=\frac{(x+1)|x-1|}{e^{\frac{1}{x-2}} \ln |x|}$ 的可去间断点的个数为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4


下列有关定义在 $(-\infty,+\infty)$ 上的可导函数 $f(x)$ 的说法正确的是
$\text{A.}$ 若 $\lim _{x \rightarrow+\infty} f(x)=A$, 并且 $\exists x_0 \in(0,+\infty)$, 使得 $f\left(x_0\right)>A, \exists x_1 \in(0,+\infty)$ 并且 $x_0 \neq x_1$, 使得 $f\left(x_1\right) < A$, 那么 $f(x)$ 在 $(0,+\infty)$ 内有最大值和最小值。 $\text{B.}$ 若 $f(x)$ 是奇函数, 并且 $\lim _{x \rightarrow+\infty} f^{\prime}(x)=A(\neq 0)$, 则 $f(x)$ 的斜渐近线条数一定是偶数。 $\text{C.}$ 若 $f^{\prime}(x)=f(x)+\int_0^x f(t) \mathrm{d} t$ 并且 $f(0)=1$, 则 $f^{\prime \prime}(0)=2$ $\text{D.}$ 令 $g(x)=\left\{\begin{array}{l}\frac{f(x)-f\left(x_0\right)}{x-x_0}, x \neq x_0 \\ f^{\prime}\left(x_0\right), x=x_0\end{array}\right.$, 其中 $x_0 \in(-\infty,+\infty)$, 则 $g^{\prime}\left(x_0\right)$ 存在


设函数 $f(x)=\left\{\begin{array}{cc}g(x) \cos \frac{1}{x^2}, & x \neq 0, \\ 0, & x=0,\end{array}\right.$ 且 $g(0)=g^{\prime}(0)=0$, 则 $f(x)$ 在点 $x=0$ 处
$\text{A.}$ 连续但不可导. $\text{B.}$ 可导但 $f^{\prime}(0) \neq 0$. $\text{C.}$ 极限存在但不连续. $\text{D.}$ 可微且 $\left.\mathrm{d} f(x)\right|_{x=0}=0$.


二、填空题 (共 11 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
$\lim _{x \rightarrow 0} \frac{\tan (\arcsin x)-x}{x^3}=$



已知常数 $a>0, b c \neq 0$, 使得 $\lim _{x \rightarrow+\infty}\left[x^a \ln \left(1+\frac{b}{x}\right)-x\right]=c$, 求 $a, b, c$.



函数 $f(x)=\frac{x}{\tan x}, x=k \pi$ 和 $x=k \pi+\frac{\pi}{2} \quad$ ( $k$ 是整数 $)$ 是间断点, 其中无穷间 断点是 ________



方程 $\arcsin x=k x$ 在 $x \in[0,1]$ 只有一个解, 那么 $k$ 的取值范围是



设 $a_n, b_n>0, \lim _{n \rightarrow \infty} a_n=0$ 且 $\int_{\sin a_n}^{a_n} e^{x^2} \mathrm{~d} x=b_n \ln \left(1+b_n\right)$ ,则 $\lim _{n \rightarrow \infty} \frac{a_n^3}{b_n^2}=$



求 $\lim _{n \rightarrow \infty}\left(\sin \frac{1}{n^2+3 n^3}\right) \sum_{k=1}^n k e^{\frac{k}{n}}$;



已知 $f^{\prime}(x)=\sqrt{1+x^2}, g^{\prime}(x)=\frac{1}{1+x}$, 且 $f(0)=g(0)=0$, 试求极限 $\lim _{x \rightarrow 0}\left(\frac{1}{f(x)}-\frac{1}{g(x)}\right)$ 。



极限 $\lim _{n \rightarrow \infty} \frac{1}{n^3}\left[1^2+3^2+\cdots+(2 n-1)^2\right]=$



$\lim _{x \rightarrow 0}\left(\cos x+\mathrm{e}^{-x^2}-1\right)^{\frac{x}{\arctan x-x}}=$



$\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \frac{|x|}{1+\sin x} \mathrm{~d} x=$



设连续函数 $f(x)$ 满足 $f(x)+2 x \int_0^x f(x-t) \mathrm{d} t=x(x>0)$, 且 $f(1)=\frac{1}{\mathrm{e}}$, 则 $f(x)$ 的极大值点和极大值分别为



三、解答题 ( 共 14 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $f(x)$ 为连续函数, 且满足 $f(x)=x^2-x \cdot f(2)+2 \int_0^1 f(x) \mathrm{d} x$, 求 $f(x)$.



 

设 $f(x)=\left(x^3 e^{x^2}+1\right) \sin ^3 x+\int_{-\pi}^\pi f(x) \sin ^3 x d x$, 求 $f(x)$.



 

设 $f(x)$ 在 $[0,1]$ 上连续,在 $(0,1)$ 内二阶可导,且 $\lim _{x \rightarrow 0^{+}} \frac{f(x)}{x}=1, \lim _{x \rightarrow 1^{-}} \frac{f(x)}{x-1}=2$. 证明:
(1) 存在 $c \in(0,1)$, 使得 $f(c)=0$;
(2) 存在 $\xi \in(0,1)$, 使得 $f^{\prime \prime}(\xi)=f(\xi)$;
(3) 存在 $\eta \in(0,1)$, 使得 $f^{\prime \prime}(\eta)-3 f^{\prime}(\eta)+2 f(\eta)=0$.



 

计算:$\lim _{x \rightarrow 0} \dfrac{x-\int_0^x\left(1+\sin ^2 t\right)^2 \mathrm{~d} t}{x^2 \sin x}$.



 

设可导函数 $ f(x)$ 满足 $f(1)=1$ ,且对 $x \geq 1$ 时,有 $f^{\prime}(x)=\frac{1}{x^2+f^2(x)}$ 。
( I ) 证明: $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限;
(II) 证明: $\lim _{x \rightarrow+\infty} f(x) \leq 1+\frac{\pi}{4}$ 。
附加题 (本题为附加题,全对才给分,其分数不计入总评,仅用于评判 $A+$ )
设 $f \in C[0,1] , g$ 为非负的周期函数,周期为 1 ,且 $g \in R[0,1]$ ,求证:
$$
\lim _{n \rightarrow+\infty} \int_0^1 f(x) g(n x) \mathrm{d} x=\left(\int_0^1 f(x) \mathrm{d} x\right)\left(\int_0^1 g(x) \mathrm{d} x\right) 。
$$



 

求极限 $\lim _{x \rightarrow 0} \frac{1}{x^4}\left[\ln \left(1+\sin ^2 x\right)-6(\sqrt[3]{2-\cos x}-1)\right]$



 

求极限 $$\lim _{x \rightarrow 0} \int_0^x\left(\dfrac{\arctan t}{t}\right)^{\dfrac{1}{\int_0^t \ln (1+u) d u}} \cot x d t$$



 

求极限 $\lim _{x \rightarrow+\infty}\left[\frac{\ln \left(x+\sqrt{x^2+1}\right)}{\ln \left(x+\sqrt{x^2-1}\right)}\right]^{x^2 \ln x}$.



 

已知函数 $f(x)$ 在 $[0,1]$ 上连续, 在 $(0,1)$ 内可导, 且 $f(0)=0, f(1)=1$. 证明:
(1) 存在 $x_0 \in(0,1)$, 使得 $f\left(x_0\right)=1-x_0$;
(2) 存在两个不同的点 $x_1, x_2 \in(0,1)$, 使得 $f^{\prime}\left(x_1\right) f^{\prime}\left(x_2\right)=1$.



 

计算 $ \lim _{x \rightarrow 0} \frac{3 \sin x+x^2 \cos \frac{1}{x}}{(1+\cos x) \ln (1+x)}$



 

求一组使得极限 $\lim _{x \rightarrow 0} \frac{\int_0^{x^2}\left(\sqrt{1+t^4}-1\right) d t}{\ln \left(1-x^\alpha\right)}=\beta \neq 0,(\alpha, \beta$ 为实数) 成立的 $\alpha, \beta$ 的值.



 

已知函数 $f(x)$ 连续, 请讨论 $\int_0^{\frac{\pi}{2}} f(\sin x) d x$ 与 $\int_0^{\frac{\pi}{2}} f(\cos x) d x$ 的大小关系, 并计算定积分 $\int_0^{\frac{\pi}{2}} \frac{\ln (1+\sqrt{\sin x})-\ln (1+\sqrt{\cos x})+\sin ^3 x}{2} d x$.



 

已知 $f^{\prime}(x)=\frac{1}{\sqrt{1+x^2}}, g^{\prime}(x)=\frac{1}{1+2 x}$, 且 $f(0)=g(0)=0$, 试求 $\lim _{x \rightarrow 0}\left[\frac{1}{f(x)}-\frac{1}{g(x)}\right]$.



 

求极限
$$
\lim _{x \rightarrow 0}\left(\frac{-\cot x}{\mathrm{e}^{-x}}+\frac{1}{\mathrm{e}^{-2 x} \sin ^2 x}+\frac{1}{x^2}\right)
$$



 

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与