科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

大一线代期中模拟

数学

一、单选题 (共 22 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 ${A}$ 为 $n$ 阶方阵,且 ${A}$ 的行列式 $|{A}|=a \neq 0$, 而 ${A}^{*}$ 是 ${A}$ 的伴随矩阵, 则 $\left|{A}^{*}\right|$ 等于
$\text{A.}$ $a$. $\text{B.}$ $\frac{1}{a}$. $\text{C.}$ $a^{n-1}$. $\text{D.}$ $a^{n}$.


行列式 $\left|\begin{array}{cccc}a & 0 & -1 & 1 \\ 0 & a & 1 & -1 \\ -1 & 1 & a & 0 \\ 1 & -1 & 0 & a\end{array}\right|=$________.
$\text{A.}$ $\text{B.}$ $\text{C.}$ $\text{D.}$


设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶可逆矩阵, 且满足 $\boldsymbol{A B}=\boldsymbol{A}+\boldsymbol{B}$, 则下面结论:
(1) $\boldsymbol{A}+\boldsymbol{B}$ 可逆;(2) $\boldsymbol{A B}=\boldsymbol{B A}$; (3) $\boldsymbol{A}-\boldsymbol{E}$ 可逆; (4) $(\boldsymbol{B}-\boldsymbol{E}) \boldsymbol{x}=\mathbf{0}$ 有非零解.
正确的共有
$\text{A.}$ 1 个. $\text{B.}$ 2 个. $\text{C.}$ 3 个. $\text{D.}$ 4 个.


设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶可逆矩阵, 且满足 $\boldsymbol{A B}=\boldsymbol{A}+\boldsymbol{B}$, 则下面结论:
(1) $\boldsymbol{A}+\boldsymbol{B}$ 可逆;(2) $\boldsymbol{A B}=\boldsymbol{B} \boldsymbol{A}$; (3) $\boldsymbol{A}-\boldsymbol{E}$ 可逆; (4) $(\boldsymbol{B}-\boldsymbol{E}) \boldsymbol{x}=\mathbf{0}$ 有非零解.
正确的共有
$\text{A.}$ 1个 $\text{B.}$ 2个 $\text{C.}$ 3个 $\text{D.}$ 4个


设 $\boldsymbol{A}, \boldsymbol{B}$ 为 $n$ 阶可逆矩阵, 且满足 $\boldsymbol{A B}=\boldsymbol{A}+\boldsymbol{B}$, 则下面结论:
(1) $\boldsymbol{A}+\boldsymbol{B}$ 可逆; (2) $\boldsymbol{A B}=\boldsymbol{B A}$; (3) $\boldsymbol{A}-\boldsymbol{E}$ 可逆; (4) $(\boldsymbol{B}-\boldsymbol{E}) \boldsymbol{x}=0$ 有非零解.
正确的共有
$\text{A.}$ 1个 $\text{B.}$ 2个 $\text{C.}$ 3个 $\text{D.}$ 4个


设 $\boldsymbol{A}$ 为三阶矩阵, $\boldsymbol{P}=\left(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3\right)$ 为可逆矩阵, 使得 $\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P}=\left(\begin{array}{llll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 2\end{array}\right)$, 则 $\boldsymbol{A}^2\left(\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2+\right.$ $\left.\boldsymbol{\alpha}_3\right)$ 是
$\text{A.}$ $\boldsymbol{\alpha}_1+2 \boldsymbol{\alpha}_3$ $\text{B.}$ $\boldsymbol{\alpha}_2+2 \boldsymbol{\alpha}_3$ $\text{C.}$ $\boldsymbol{\alpha}_1+4 \boldsymbol{\alpha}_3$ $\text{D.}$ $\boldsymbol{\alpha}_2+4 \boldsymbol{\alpha}_3$


行列式 $\left|\begin{array}{cccc}-3 & 1 & 1 & 1 \\ 1 & -3 & 1 & 1 \\ 1 & 1 & -3 & 1 \\ 1 & 1 & 1 & -3\end{array}\right|=$
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3


设四阶方阵 $A$ 的行列式 $|A|=0$, 则 $A$ 中
$\text{A.}$ 必有一列元素全为零 $\text{B.}$ 必有两列元素对应成比例 $\text{C.}$ 任意一列向量是其余列向量的线性组合 $\text{D.}$ 必有一列向量是其余向量的线性组合


设 $A_{i j}$ 是 $n$ 阶行列式 $D$ 的元素 $a_{i j}(i, j=1,2, \cdots, n)$ 的代数余子式, 当 $i \neq j$ 时, 下列各式错误的是
$\text{A.}$ $D=a_{i 1} A_{j 1}+a_{i 2} A_{j 2}+\cdots+a_{i n} A_{j n}$ $\text{B.}$ $D=a_{i 1} A_{i 1}+a_{i 2} A_{i 2}+\cdots+a_{i n} A_{i n}$ $\text{C.}$ $D=a_{1 j} A_1+a_{2 j} A_{2 j}+\cdots+a_{n j} A_{n j}$ $\text{D.}$ $0=a_{i 1} A_{j 1}+a_{i 2} A_{j 2}+\cdots+a_{i n} A_{j n}$


下列各项中为某三阶行列式中带有正号的项是
$\text{A.}$ $a_{11} a_{23} a_{32}$ $\text{B.}$ $a_{12} a_{31} a_{23}$ $\text{C.}$ $a_{13} a_{22} a_{31}$ $\text{D.}$ $a_{23} a_{12} a_{32}$


设 $\mathbf{A}$ 是 4 阶矩阵, 且 $\mathbf{A}$ 的行列式 $|\mathbf{A}|=0$, 则 $\mathbf{A}$ 中
$\text{A.}$ 必有一列元素全为 0 ; $\text{B.}$ 必有两列元素成比例; $\text{C.}$ 必有一列向量是其余列向量的线性组合; $\text{D.}$ 任意列向量是其余列向量的线性组合.


设 $\boldsymbol{A}$ 为 $n(n \geqslant 2)$ 阶矩阵, $\boldsymbol{B}$ 为 $n$ 阶可逆矩阵, $\boldsymbol{b}$ 为 $n$ 维列向量. 下列命题中, 错误的 是
$\text{A.}$ 若方程组 $\boldsymbol{A x}=\boldsymbol{b}$ 有解, 则方程组 $\boldsymbol{A B x}=\boldsymbol{b}$ 有解. $\text{B.}$ 若方程组 $\boldsymbol{A x}=\boldsymbol{b}$ 有解, 则方程组 $\boldsymbol{B A x}=\boldsymbol{b}$ 有解. $\text{C.}$ 若方程组 $\boldsymbol{A x}=0$ 有非零解, 则方程组 $\boldsymbol{A B x}=0$ 有非零解. $\text{D.}$ 若方程组 $\boldsymbol{A x}=0$ 有非零解, 则方程组 $\boldsymbol{B A x}=0$ 有非零解.


设 $A$ 为 3 阶矩阵,且 $|A|=\frac{1}{2}$ ,则行列式 $\left|-2 A^*\right|$ 等于
$\text{A.}$ -2 $\text{B.}$ $-\frac{1}{2}$ $\text{C.}$ -1 $\text{D.}$ 2


二、解答题 ( 共 7 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设 $\boldsymbol{A}=\boldsymbol{E}-\boldsymbol{\xi} \boldsymbol{\xi}^{\mathrm{T}}$, 其中 $\boldsymbol{E}$ 是 $n$ 阶单位矩阵, $\boldsymbol{\xi}$ 是 $n$ 维非零列向量, $\boldsymbol{\xi}^{\mathrm{T}}$ 是 $\boldsymbol{\xi}$ 的转置. 证明: (1) $\boldsymbol{A}^{2}=\boldsymbol{A}$ 的充要条件是 $\boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{\xi}=1$;
(2) 当 $\boldsymbol{\xi}^{\mathrm{T}} \boldsymbol{\xi}=1$ 时, $\boldsymbol{A}$ 是不可逆矩阵.



 

设 3 阶实矩阵 $\boldsymbol{A}$ 和其伴随矩阵 $\boldsymbol{A}^*$ 满足 $\boldsymbol{A}-\boldsymbol{A}^*-\boldsymbol{E}=\boldsymbol{O},|\boldsymbol{A}|=2$.
(1) 证明 $\boldsymbol{A}$ 可以对角化;
(2) 如果 $\boldsymbol{A}$ 为实对称阵, 且 $\boldsymbol{\xi}=(1,1-1)^{\mathrm{T}}$ 是齐次线性方程组 $(\boldsymbol{A}-2 \boldsymbol{E}) \boldsymbol{x}=\mathbf{0}$ 的一个解, 求 对称矩阵 $\boldsymbol{B}$ 使得 $\boldsymbol{B}^2=\boldsymbol{A}+\boldsymbol{E}$.



 

已知 $A$ 是 $2 n+1$ 阶正交矩阵,即 $A A^T=A^T A=E$. 证明 : $\left|E-A^2\right|=0$.



 

证明: 若 $A$ 为 $m \times n$ 矩阵, $B$ 为 $n \times p$ 矩阵,则有
$r(A B) \geq r(A)+r(B)-n$. 特别地,当 $A B=O$ 时,有
$r(A)+r(B) \leq n$.



 

设 $\mathbf{A}=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & -4 & 5 & 0 \\ 0 & 0 & -6 & 7\end{array}\right]$. $\mathbf{E}$ 为四阶单位矩阵,且 $\mathbf{B}=(\mathbf{E}+\mathbf{A})^{-1}(\mathbf{E}-\mathbf{A})$ ,则 $(\mathbf{E}+\mathbf{B})^{-1}=$



 

把下面矩阵表示成初等矩阵的乘积并求出其逆矩阵。
$$
\left(\begin{array}{ccc}
4 & 1 & 2 \\
3 & 2 & 1 \\
5 & -3 & 2
\end{array}\right)
$$



 

设 $r, s$ 为正整数, 分块矩阵 $A$ 为
$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
O & A_{22}
\end{array}\right],
$$

其中 $A_{11}, A_{22}$ 分别为 $r$ 阶, $s$ 阶的方阵, $O$ 为 $s \times r$ 零矩阵。求证:
(1) $A$ 可逆的充分必要条件是 $A_{11}$ 与 $A_{22}$ 都可逆;
(2) 当 $A$ 可逆时, 用 $A_{11}, A_{12}, A_{22}$ 给出 $A^{-1}$ 的表达式。



 

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与