科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

试卷具体名称2

数学

一、解答题 ( 共 8 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求极限: $\lim _{x \rightarrow 0^{+}} \frac{x^x-(\sin x)^x}{x^3}$



 

求极限: $\lim _{x \rightarrow 0} \frac{\left(1+\frac{1}{2} x^2-\sqrt{1+x^2}\right) \cos x^2}{\cos x-e^{-\frac{x^2}{2}}}$



 

求极限: $ \lim _{x \rightarrow 0}\left[\frac{\sin (\sin x)}{\sin (\arctan x)}\right]^{\frac{1}{1-\cos x}}$



 

求 $\int \frac{x e^x}{(1+x)^2} d x$



 

求 $\int \frac{d x}{x \sqrt{1+x^3+x^6}}$



 

求 $\int \frac{x+1}{x\left(1+x e^x\right)} d x$



 

求 $$\int \frac{x e^{\arctan x}}{\left(1+x^2\right)^{\frac{3}{2}}} d x$$



 

求 $$\lim _{x \rightarrow 0} \frac{\left(\int_0^x e^{t^2} d t\right)^2}{\int_0^x t e^{2 t^2} d t}$$



 

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与