科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

24考研10月摸底试题

数学二

一、单选题 (共 10 题,每小题 5 分,共 50 分,每题只有一个选项正确)
$x \rightarrow 0^{+}$时, 下列无穷小阶数最高的是
$\text{A.}$ $\int_0^x\left(\mathrm{e}^{t^2}-1\right) \mathrm{d} t$ $\text{B.}$ $\int_0^x \ln \left(1+\sqrt{t^3}\right) \mathrm{d} t$ $\text{C.}$ $\int_0^{\sin x} \sin t^2 \mathrm{~d} t$ $\text{D.}$ $\int_0^{1-\cos x} \sqrt{\sin ^3 t} \mathrm{~d} t$


当 $x \rightarrow 0$ 时, $x-\ln \left(x+\sqrt{1+x^2}\right) \sim c x^k$, 则 $c, k$ 分别是
$\text{A.}$ $\frac{1}{6}, 3$. $\text{B.}$ $\frac{1}{6}, 2$. $\text{C.}$ $\frac{1}{3}, 2$. $\text{D.}$ $\frac{1}{3}, 3$.


$\lim _{n \rightarrow \infty} \frac{\pi}{2 n^4} \sum_{i=1}^n \sum_{j=1}^n i^2 \sin \frac{\pi j}{2 n}=$
$\text{A.}$ $\frac{1}{2}$. $\text{B.}$ $\frac{1}{3}$. $\text{C.}$ $\frac{1}{4}$. $\text{D.}$ $\frac{1}{5}$.


当 $x \rightarrow 0^{+}$时, 与 $\sqrt{x}$ 等价的无穷小量是:
$\text{A.}$ $\sqrt{1+\sqrt{x}}-1$ $\text{B.}$ $\ln \left(\frac{1+x}{1-\sqrt{x}}\right)$ $\text{C.}$ $1-e^{\sqrt{x}}$ $\text{D.}$ $1-\cos \sqrt{x}$


当 $x \rightarrow 0$ 时, $\mathrm{e}^x-\frac{1+a x^2}{1+b x}$ 与 $x^3$ 是同阶无穷小, 则
$\text{A.}$ $a=\frac{1}{2}, b=1$. $\text{B.}$ $a=-\frac{1}{2}, b=1$. $\text{C.}$ $a=\frac{1}{2}, b=-1$. $\text{D.}$ $a=-\frac{1}{2}, b=-1$.


$x \rightarrow 0^{+}$时, 下列无穷小量的阶数从低到高的排序是
① 由 $\left\{\begin{array}{l}x=t^3 \\ y=t^2\end{array}\right.$ 确定的函数 $y=f(x)$
②$\ln \left(-x+\sqrt{1+x^2}\right)$
③$\int_0^{\sin x} \ln \left(1+\sqrt{t^2}\right) \mathrm{d} t$
④$\frac{1-\cos \sqrt{x}}{\sqrt[4]{x}}$
$\text{A.}$ ①④②③ $\text{B.}$ ②④①③ $\text{C.}$ ①④③② $\text{D.}$ ④②①③


设有下列命题
(1) 数列 $\left\{x_n\right\}$ 收敛 (即存在极限 $\lim _{n \rightarrow \infty} x_n$ ), 则 $x_n$ 有界.
(2) 数列极限 $\lim _{n \rightarrow \infty} x_n=a \Leftrightarrow \lim _{n \rightarrow \infty} x_{n+l}=a$. 其中 $l$ 为某个确定的正整数.
(3) 数列 $\lim _{n \rightarrow \infty} x_n=a \Leftrightarrow \lim _{n \rightarrow \infty} x_{2 n-1}=\lim _{n \rightarrow \infty} x_{2 n}=a$.
(4) 数列极限 $\lim _{n \rightarrow \infty} x_n$ 存在 $\Leftrightarrow \lim _{n \rightarrow \infty} \frac{x_{n+1}^{n \rightarrow \infty}}{x_n}=1$.
则以上命题中正确的个数是
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4


$x \rightarrow 0^{+}$时, 下列无穷小量的阶数从低到高的排序是 ( )
(1). 由 $\left\{\begin{array}{l}x=t^3 \\ y=t^2\end{array}\right.$ 确定的函数 $y=f(x)$
(2). $\ln \left(-x+\sqrt{1+x^2}\right)$
(3). $\int_0^{\sin x} \ln \left(1+\sqrt{t^2}\right) \mathrm{d} t$
(4). $\frac{1-\cos \sqrt{x}}{\sqrt[4]{x}}$
$\text{A.}$ (1)(4)(2)(3) $\text{B.}$ (2)(4)(1)(3) $\text{C.}$ (1)(4)(3)(2) $\text{D.}$ (4)(2)(1)(3)


二、填空题 (共 6 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $\lim _{x \rightarrow 0} \frac{\ln \left(1-2 x^3\right)+x f(x)}{x^6}=3$, 则 $\lim _{x \rightarrow 0} \frac{f(x)-2 x^2}{x^5}=$



$\lim _{x \rightarrow 0} \frac{\tan (\arcsin x)-x}{x^3}=$



$\lim _{n \rightarrow \infty} \sum_{i=1}^n \frac{i\left(1+\cos \frac{2 \pi i}{n}\right)^2}{n^2+i}=$



三、解答题 ( 共 6 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设数列 $\left\{x_n\right\},\left\{a_n\right\},\left\{b_n\right\}$ 分别满足 $x_n=\left(1+\sin \frac{1}{n}\right)^n, a_n=\frac{x_{2 n}}{x_{2 n-1}}, b_n=\prod_{i=1}^n a_i$.
(I) 求 $\lim _{n \rightarrow \infty} x_n$;
(II ) 证明: $\lim _{n \rightarrow \infty} b_n$ 存在.



 

求极限 $\lim _{n \rightarrow \infty}\left(\frac{1}{n^2+1^2}+\frac{2}{n^2+2^2}+\cdots+\frac{n}{n^2+n^2}\right)$.



 

设 $\lim _{x \rightarrow 0} \frac{(1+x)^{\frac{1}{x}}-\left(A+B x+C x^2\right)}{x^3}=D$ ,求常数 $A, B, C, D$.



 

求 $\lim _{x \rightarrow 0}\left(\frac{\ln \left(x+\sqrt{1+x^2}\right)}{x}\right)^{\frac{1}{\ln ^2(1+x)}}$.



 

设 $a_1=2, a_{n+1}=2+\frac{1}{a_n}$ ,求 $\lim _{n \rightarrow \infty} a_n$.



 

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与