考研数学
重点科目
其它科目

科数网

极限

数学

单选题 (共 1 题 ),每题只有一个选项正确
设函数 $f(x)$ 在 $x=a$ 处可导, 则 $\lim _{x \rightarrow a} \frac{f(x) a^3-f(a) x^3}{a^2-x^2}=$
$\text{A.}$ $3 a^2 f^{\prime}(a)+2 f(a)$ $\text{B.}$ $-\frac{a^2}{3} f^{\prime}(a)+\frac{1}{2} f(a)$ $\text{C.}$ $3 a^2 f^{\prime}(a)-\frac{2}{3} f(a)$ $\text{D.}$ $-\frac{a^2}{2} f^{\prime}(a)+\frac{3 a}{2} f(a)$

填空题 (共 3 题 ),请把答案直接填写在答题纸上
$\lim _{x \rightarrow 0} \dfrac{\ln \left(e^{\sin x}+\sqrt[3]{1-\cos x}\right)-\sin x}{\arctan (4 \sqrt[3]{1-\cos x})}=$

极限 $\lim _{x \rightarrow 0} \frac{\arctan x-x}{x-\sin x}=$

$\lim _{x \rightarrow 0} \frac{\tan (\arcsin x)-x}{x^3}=$

解答题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求极限 $\lim _{x \rightarrow 0} \frac{\left(1+\frac{1}{2} x^2-\sqrt{1+x^2}\right) \cos x^2}{\cos x-e^{-\frac{x^2}{2}}}$

计算:$\lim _{x \rightarrow 0} \dfrac{x-\int_0^x\left(1+\sin ^2 t\right)^2 \mathrm{~d} t}{x^2 \sin x}$.

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与