考研数学
重点科目
其它科目

科数网

微分方程(简答题)

数 学

解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
求微分方程 $y^{\prime \prime \prime}+6 y^{\prime \prime}+\left(9+a^{2}\right) y^{\prime}=1$ 的通解, 其中常数 $a>0$.

设函数 $y=y(x)$ 满足微分方程 $y^{\prime \prime}-3 y^{\prime}+2 y=2 \mathrm{e}^{x}$, 且其图形在点 $(0,1)$ 处的切线与曲线 $y=$ $x^{2}-x+1$ 在该点的切线重合, 求函数 $y=y(x)$.

设 $f(x)=\sin x-\int_{0}^{x}(x-t) f(t) \mathrm{d} t$, 其中 $f$ 为连续函数, 求 $f(x)$.

试卷二维码

分享此二维码到群,让更多朋友参与