单选题 (共 3 题 ),每题只有一个选项正确
当 $x \rightarrow 0$ 时, $\alpha(x), \beta(x)$ 是非零无穷小量,给出以下四个命题:
(1) 若 $\alpha(x) \sim \beta(x)$, 则 $\alpha^2(x) \sim \beta^2(x)$ ;
(2) 若 $\alpha^2(x) \sim \beta^2(x)$, 则 $\alpha(x) \sim \beta(x)$
(3) 若 $\alpha(x) \sim \beta(x)$ ,则 $\alpha(x)-\beta(x) \sim o(\alpha(x))$ ;
(4) 若 $\alpha(x)-\beta(x) \sim o(\alpha(x))$, 则 $\alpha(x) \sim \beta(x)$.
其中所有真命题序号是
$\text{A.}$ (1)(2)
$\text{B.}$ (1)(4)
$\text{C.}$ (1)(3)(4)
$\text{D.}$ (2)(3)(4)
曲线 $y=x \ln \left(\mathrm{e}+\frac{1}{x-1}\right)$ 的斜斩近线方程为
$\text{A.}$ $y=x+\mathrm{e}$
$\text{B.}$ $y=x+\frac{1}{\mathrm{e}}$
$\text{C.}$ $y=x$
$\text{D.}$ $y=x-\frac{1}{\mathrm{e}}$
曲线 $y=x \ln \left(\mathrm{e}+\frac{1}{x-1}\right)$ 的斜渐近线方程为
$\text{A.}$ $y=x+\mathrm{e}$
$\text{B.}$ $y=x+\frac{1}{\mathrm{e}}$
$\text{C.}$ $y=x$
$\text{D.}$ $y=x-\frac{1}{\mathrm{e}}$