单选题 (共 1 题 ),每题只有一个选项正确
设 $f(x)$ 在 $R$ 上连续,且 $f(x) \neq 0, \varphi(x)$ 在 $R$ 上有定义,且有间断点,则下列陈述中哪些是对的?
$\text{A.}$ $\varphi[f(x)]$ 必有间断点;
$\text{B.}$ $[\varphi(x)]^2$ 必有间断点;
$\text{C.}$ $f[\varphi(x)]$ 未必有间断点;
$\text{D.}$ $\frac{\varphi(x)}{f(x)}$ 没有间断点;
解答题 (共 5 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
已知 $f\left(e^x\right)=x e^{-x}$ ,则 $f(x)=$
设 $f\left(x^2-1\right)=\ln \frac{x^2}{x^2-2}$ ,且 $f[\varphi(x)]=\ln x$ ,求 $\varphi(x)$
已知 $y=2 x, x \in R$ ,则其反函数
判定 $f(x)=\frac{1-e^{-x}}{1+e^{-x}}$ 的奇偶性.
设 $g(x)=\left\{\begin{array}{ll}2-x, & x \leq 0 \\ x+2, & x>0\end{array}, f(x)=\left\{\begin{array}{ll}x^2, & x < 0 \\ -x, & x \geq 0\end{array}\right.\right.$ ,则复合函数 $g[f(x)]=$