单选题 (共 3 题 ),每题只有一个选项正确
$\lim _{x \rightarrow 0} \frac{x^2-\sin ^2 x}{x^4}=$
$\text{A.}$ $-\frac{1}{3}$.
$\text{B.}$ $\frac{1}{3}$.
$\text{C.}$ $-\frac{1}{6}$.
$\text{D.}$ $\frac{1}{6}$.
$\text{E.}$ $1$
已知 $\lim _{x \rightarrow \infty}\left(\frac{x^2}{x+1}-a x-b\right)=0$ ,其中 $a, b$ 是常数,则 $\delta$
$\text{A.}$ $a=1, b=1$
$\text{B.}$ $a=-1, b=1$
$\text{C.}$ $a=1, b=-1$
$\text{D.}$ $a=-1, b=-1$
已知数列 $\left\{a_n\right\}$ 单调,下列结论正确的是
$\text{A.}$ $\lim _{n \rightarrow \infty} e^{a_n}$ 存在;
$\text{B.}$ $\lim _{n \rightarrow \infty} \frac{1}{1+a_n^2}$ 存在;
$\text{C.}$ $\lim _{n \rightarrow \infty} \tan a_n$ 存在;
$\text{D.}$ $\lim _{n \rightarrow \infty} \frac{1}{1-a_n^2}$ 存在。
填空题 (共 3 题 ),请把答案直接填写在答题纸上
求极限 $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=$
$\lim _{x \rightarrow \infty} \frac{x+\sin x}{x}=$
设函数 $f(x)$ 在 $x=0$ 处可导, 且 $f(0)=0$, 则 $\lim _{x \rightarrow 0} \frac{x^2 f(x)-2 f\left(x^3\right)}{x^3}=$