单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f(x, y)=1-x^2+y^2$, 则下列结论正确的是
$\text{A.}$ 点 $(0,0)$ 是 $f(x, y)$ 的极小值.
$\text{B.}$ 点 $(0,0)$ 是 $f(x, y)$ 的极大值.
$\text{C.}$ 点 $(0,0)$ 不是 $f(x, y)$ 的驻点.
$\text{D.}$ 点 $(0,0)$ 不是 $f(x, y)$ 的极值点.
已知 $f(x, y)=\frac{x y}{x^2+y}$, 则 $f\left(x y, \frac{x}{y}\right)=(\quad)$
$\text{A.}$ $\frac{x}{x y^3+1}$
$\text{B.}$ $\frac{y}{x y^3+1}$
$\text{C.}$ $\frac{x y}{x^2 y^2+1}$
$\text{D.}$ $\frac{x y}{x y^3+1}$
已知函数 $f(x, y)=x^2 y+2 x y+\frac{1}{3} y^2$, 则
$\text{A.}$ $(0,0)$ 是 $f(x, y)$ 的极值点.
$\text{B.}$ $(1,-1)$ 是 $f(x, y)$ 的极值点.
$\text{C.}$ $(-2,0)$ 是 $f(x, y)$ 的极值点.
$\text{D.}$ $(-1,1)$ 是 $f(x, y)$ 的最大极值点.
$\text{E.}$ 由 $f(x, y)=x^2 y+2 x y+\frac{1}{3} y^3$
$\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}}\left(x^2+y^2\right)^{x^2 y^2}=(\quad)$.
$\text{A.}$ 0 ;
$\text{B.}$ 1 ;
$\text{C.}$ 2 ;
$\text{D.}$ $e$
二元函数 $z=3(x+y)-x^3-y^3$ 的极值点是 ( ).
$\text{A.}$ $(1,2)$;
$\text{B.}$ (1.-2);
$\text{C.}$ $(-1,2)$;
$\text{D.}$ $(-1,-1)$.
设函数 $u=u(x, y), v=v(x, y)$ 在点 $(x, y)$ 的某邻域内可微分, 则 在点 $(x, y)$ 处有
$\operatorname{grad}(u v)=$
$\text{A.}$ $gradu-gradv;$
$\text{B.}$ $u \cdot gradv + v cdot gradu;$
$\text{C.}$ $u \cdot gradv;$
$\text{D.}$ $v \cdot gradu$