考研数学
重点科目
其它科目

科数网

阶段性水平测试

高等数学

单选题 (共 6 题 ),每题只有一个选项正确
极限 $\lim _{x \rightarrow 0} \frac{\int_0^x t \ln (1+t \sin t) d t}{1-\cos x^2}=(\quad)$ 。
$\text{A.}$ $\frac{1}{4}$ $\text{B.}$ $\frac{1}{2}$ $\text{C.}$ 1 $\text{D.}$ 2

曲线 $y=\frac{1}{x}+\ln \left(1+e^x\right)$ 渐近线的条数为()
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

下列命题中正确的是()
$\text{A.}$ 若函数 $f(x)$ 在 $x=x_0$ 处不可导, 则 $f(x)$ 在 $x=x_0$ 处不连续. $\text{B.}$ 若函数 $f(x)$ 在 $x=x_0$ 处不连续, 则 $f_{-}^{\prime}\left(x_0\right), f_{+}^{\prime}\left(x_0\right)$ 中至少有一个不存在. $\text{C.}$ 若 $f_{-}^{\prime}\left(x_0\right), f_{+}^{\prime}\left(x_0\right)$ 存在, 则函数 $f(x)$ 在 $x=x_0$ 处可导. $\text{D.}$ 若函数 $f(x)$ 在 $x=x_0$ 处连续, 则 $f(x)$ 在 $x=x_0$ 处左可导并且右可导.

设 $f(x, y)=\left\{\begin{array}{c}\left(x^2+y^2\right) \sin \frac{1}{x^2+y^2}, x^2+y^2 \neq 0 \\ 0, x^2+y^2=0\end{array}\right.$
则在原点 $(0,0)$ 处 $f(x, y)(\quad)$.
$\text{A.}$ 偏导数不存在; $\text{B.}$ 不可微; $\text{C.}$ 偏导数存在且连续; $\text{D.}$ 可微 。

设 $f(x)=\left\{\begin{array}{l}x, 0 \leqslant x \leqslant \frac{1}{2} \\ 2-2 x, \frac{1}{2} < x < 1\end{array}\right.$ ,而

$$
s(x)=\frac{a_0}{2}+\sum_{n=1}^{\infty} a_n \cos n \pi x,-\infty < x < +\infty,
$$


其中 $a_n=2 \int_0^1 f(x) \cos n \pi x d x, n=0,1,2, \cdots$ ,则 $s\left(-\frac{5}{2}\right)$ 等于
$\text{A.}$ $\frac{1}{2}$ $\text{B.}$ $-\frac{1}{2}$ $\text{C.}$ $\frac{3}{4}$ $\text{D.}$ $-\frac{3}{4}$

设 $f(x, y)=a x^2+2 a x y+y^2$ 在点 $(0,0)$ 处取得极小值,则 $a$ 的取值范围是 $\square$ .
$\text{A.}$ $[0,1]$ $\text{B.}$ $[0,1)$ $\text{C.}$ $(0,1]$ $\text{D.}$ $(0,1)$

试卷二维码

分享此二维码到群,让更多朋友参与