单选题 (共 6 题 ),每题只有一个选项正确
函数 $z=\ln (1-x y)$ 在点 $(0,1)$ 处的全微分 $\mathrm{d} z=$
$\text{A.}$ $dx$
$\text{B.}$ $-dx$,
$\text{C.}$ $dy$
$\text{D.}$ $-dy$
函数 $f(x)=\frac{1}{3} x^3+\frac{1}{2} x^2+6 x+1$ 的图形在点 $(0,1)$ 处的切线与 $x$ 轴交点的坐标是
$\text{A.}$ $\left(-\frac{1}{6}, 0\right)$
$\text{B.}$ $(-1,0)$
$\text{C.}$ $\left(\frac{1}{6}, 0\right)$
$\text{D.}$ $(1,0)$
当 $x \rightarrow \infty$ 时, $\left(1-\frac{1}{x}\right)^x$ 的极限为 ( )。
$\text{A.}$ $e$
$\text{B.}$ $\frac{1}{e}$
$\text{C.}$ 1
$\text{D.}$ 不存在
以下结论正确的是 ( )
$\text{A.}$ $d \left[\int f(x) d x\right]=f(x)$
$\text{B.}$ $\left[\int f(x) d x\right]^{\prime}=\int f^{\prime}(x) d x$
$\text{C.}$ $\int f^{\prime}(x) d x=f(x)$
$\text{D.}$ $d \left[\int f(x) d x\right]=f(x) d x$
若 $\int f(x) d x=F(x)+C$ ,则 $\int f(a x+b) d x=(\quad)$.
$\text{A.}$ $a F(a x+b)+C$
$\text{B.}$ $\frac{F(a x+b)}{a}+C$
$\text{C.}$ $\frac{F(x)}{a}+C$
$\text{D.}$ $a F ( x )+C$
设 $z=f(x, v), v=v(x, y)$ 其中 $f, v$ 具有二阶连续偏导数. 则 $\frac{\partial^2 z}{\partial y^2}=(\quad)$.
$\text{A.}$ $\frac{\partial^2 f}{\partial v \partial y} \cdot \frac{\partial v}{\partial y}+\frac{\partial f}{\partial v} \cdot \frac{\partial^2 v}{\partial y^2}$;
$\text{B.}$ $\frac{\partial f}{\partial v} \cdot \frac{\partial^2 v}{\partial y^2}$;
$\text{C.}$ $\frac{\partial^2 f}{\partial v^2}\left(\frac{\partial v}{\partial y}\right)^2+\frac{\partial f}{\partial v} \cdot \frac{\partial^2 v}{\partial y^2}$;
$\text{D.}$ $\frac{\partial^2 f}{\partial v^2} \cdot \frac{\partial v}{\partial y}+\frac{\partial f}{\partial v} \cdot \frac{\partial^2 v}{\partial y^2}$.