单选题 (共 6 题 ),每题只有一个选项正确
设 $y=e^{\sin x}$, 则微分 $\mathrm{d} y= $
$\text{A.}$ $e^{\sin x} \mathrm{~d} x$
$\text{B.}$ $e^{\sin x} d \sin x$
$\text{C.}$ $e^{\sin x}$
$\text{D.}$ $e^{\sin x} \cos x$
$\lim \limits _{x \rightarrow + \infty }x^{2}( \sin \dfrac {1}{x-1}- \sin \dfrac {1}{x+1})=$
$\text{A.}$ 1
$\text{B.}$ -1
$\text{C.}$ 2
$\text{D.}$ -2
设周期函数 $f(x)$ 在 $(-\infty,+\infty)$ 内可导, 周期为 4 , 又 $\lim _{x \rightarrow 0} \frac{f(1)-f(1-x)}{2 x}=-1$,则曲线 $y=f(x)$ 在 $x=5$ 处切线斜率为
$\text{A.}$ $\frac{1}{2}$
$\text{B.}$ 0
$\text{C.}$ -1
$\text{D.}$ -2
设 $\lim _{x \rightarrow 0^{+}} \frac{\mathrm{e}^{\tan x}-\mathrm{e}^{\sin a x}}{\int_0^{\mathrm{e}^{x^2}-1} \frac{\ln (1+\sqrt{t})}{\sqrt{b+t^2}} \mathrm{~d} t}=\frac{3}{2}$, 则 $(\quad)$.
$\text{A.}$ $a=-1, b=2$
$\text{B.}$ $a=-1, b=4$
$\text{C.}$ $a=1, b=2$
$\text{D.}$ $a=1, b=4$
. 当 $x \rightarrow 0$ 时, 若 $x-\tan x$ 与 $x^k$ 是同阶无穷小, 则 $k=$
$\text{A.}$ 1 .
$\text{B.}$ 2 .
$\text{C.}$ 3 .
$\text{D.}$ 4 .
若 $f(x)=\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}$, 则 $x=0$ 是 $f(x)$ 的
$\text{A.}$ 可去间断点
$\text{B.}$ 连续点
$\text{C.}$ 第二类间断点
$\text{D.}$ 跳跃间断点