考研数学
重点科目
其它科目

科数网

试卷

数学

单选题 (共 6 题 ),每题只有一个选项正确
已知平面区域 $D_1=\left\{(x, y) \left\lvert\, 0 \leqslant y \leqslant x \leqslant \frac{\pi}{2}\right.\right\}, D_2=\left\{(x, y) \left\lvert\, 0 \leqslant x \leqslant y \leqslant \frac{\pi}{2}\right.\right\}$, $D_3=\left\{(x, y) \left\lvert\, \frac{\pi}{2} \leqslant x \leqslant y \leqslant \pi\right.\right\}$, 记 $I_1=\iint_{D_1} e ^{-x^2} \sin y d x d y, I_2=\iint_{D_2} e ^{-x^2} \sin y d x d y, I_3=\iint_{D_3} e ^{-x^2} \sin y d x d y$,则()
$\text{A.}$ $I_3 < I_1 < I_2$. $\text{B.}$ $I_3 < I_2 < I_1$. $\text{C.}$ $I_1 < I_3 < I_2$. $\text{D.}$ $I_1 < I_2 < I_3$.

设 $f(x)$ 是严格单调的连续奇函数, $g(x)$ 是偶函数, 已知数列 $\left\{x_n\right\}$, 则 ()
$\text{A.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在 $\text{B.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在 $\text{C.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} g\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在 $\text{D.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} f\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在

设连续函数 $f(x, y)$ 满足 $\lim _{\substack{x \rightarrow 0 \\ y \rightarrow 0}} \frac{f(x, y)-x-2 y-4}{x^2+y^2}=-1$, 则 $\lim _{h \rightarrow 0} \frac{f(2 h, 0)-f(0,-h)}{h}=($ )
$\text{A.}$ -1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

曲线 $y=x \ln \frac{x}{x-1}+\ln [x(x-1)]$ 的渐近线的条数为 ( )
$\text{A.}$ 0. $\text{B.}$ 1 . $\text{C.}$ 2 . $\text{D.}$ 3 .

记3 元二次型 $f\left(x_1, x_2, x_3\right)=\sum_{i=1}^3\left(x_i-\bar{x}\right)^2, \bar{x}=\frac{x_1+x_2+x_3}{3}$, 其对应的矩阵为 $A$, 则

$\text{A.}$ $r( A )+r( E - A )=4$. $\text{B.}$ $r( A )+r( E + A )=4$. $\text{C.}$ $r( A )+r( E - A )=5$. $\text{D.}$ $ r( A )+r( E + A )=5$.

设 $I_1=\int_{-1}^1 e ^{-\frac{x^2}{2}} d x, I_2=\sqrt{2 \pi\left(1- e ^{-1}\right)}, I_3=4\left(1- e ^{-\frac{1}{2}}\right)$, 则 $I_1, I_2, I_3$ 的大小关系为 $(\quad)$
$\text{A.}$ $I_3>I_1>I_2$. $\text{B.}$ $I_1>I_3>I_2$. $\text{C.}$ $I_2>I_1>I_3$. $\text{D.}$ $I_2>I_3>I_1$.

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与