考研数学
重点科目
其它科目

科数网

26届寒假作业数学年前测试

数学

单选题 (共 6 题 ),每题只有一个选项正确
若 $\lim _{x \rightarrow 0} \frac{\sin 6 x+x f(x)}{x^3}=0$, 则 $\lim _{x \rightarrow 0} \frac{6+f(x)}{x^2}$ 为
$\text{A.}$ 0 $\text{B.}$ 6 $\text{C.}$ 36 $\text{D.}$ $\infty$

函数 $f(x)=(x-[x]) \sin 2 \pi x$ 是
$\text{A.}$ 偶函数 $\text{B.}$ 无界函数 $\text{C.}$ 周期函数 $\text{D.}$ 单调函数

当 $x \rightarrow 0$ 时, $\ln (1+x)$ 与 $x$ 比较是 ( ).
$\text{A.}$ 高阶的无穷小 $\text{B.}$ 等价的无穷小 $\text{C.}$ 同阶的无穷小 $\text{D.}$ 低阶的无穷小

求 $\lim _{n \rightarrow \infty} \frac{\sin \frac{\pi}{n}}{n+1}+\frac{\sin \frac{2 \pi}{n}}{n+\frac{1}{2}}+\cdots+\frac{\sin \frac{n \pi}{n}}{n+\frac{1}{n}}$.
$\text{A.}$ 1; $\text{B.}$ $\frac{2}{\pi}$ $\text{C.}$ $\frac{\pi}{2}$ $\text{D.}$ 0

若 $f(x)=\frac{e^{\frac{1}{x}}-1}{e^{\frac{1}{x}}+1}$, 则 $x=0$ 是 $f(x)$ 的
$\text{A.}$ 可去间断点 $\text{B.}$ 连续点 $\text{C.}$ 第二类间断点 $\text{D.}$ 跳跃间断点

$f(x)$ 当 $x \rightarrow x_0$ 时的右极限 $f\left(x_0^{+}\right)$和左极限 $f\left(x_0^{-}\right)$存在且相等是 $\lim _{x \rightarrow x_0} f(x)$ 存在的 $\qquad$条件
$\text{A.}$ 必要 $\text{B.}$ 充分 $\text{C.}$ 充要 $\text{D.}$ 充分不必要

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与