考研数学
重点科目
其它科目

科数网

2025考研数学真题汇编

数学

单选题 (共 6 题 ),每题只有一个选项正确
设函数 $f(x)=\lim _{n \rightarrow \infty} \frac{1+x}{1+n x^{2 n}}$ ,则 $f(x)(\quad)$
$\text{A.}$ 在 $x=1, x=-1$ 处都连续 $\text{B.}$ 在 $x=1$ 处连续, $x=-1$ 处不连续 $\text{C.}$ 在 $x=1, x=-1$ 处都不连续 $\text{D.}$ 在 $x=1$ 处不连续, $x=-1$ 处连续

设 $I=\int_a^{a+k \pi}|\sin x| \mathrm{d} x, k$ 为整数,则 $I$ 的值()
$\text{A.}$ 只与 $a$ 有关 $\text{B.}$ 只与 $k$ 有关 $\text{C.}$ 与 $a, k$ 均有关 $\text{D.}$ 与 $a, k$ 均无关

已知幂级数 $\sum_{n=0}^{\infty} a_n x^n$ 的和函数为 $\ln (2+x)$ ,则 $\sum_{n=1}^{\infty} n a_{2 n}=$ ( )
$\text{A.}$ $-\frac{1}{6}$ $\text{B.}$ $-\frac{1}{3}$ $\text{C.}$ $\frac{1}{6}$ $\text{D.}$ $\frac{1}{3}$

已知级数 ① $\sum_{n=1}^{\infty} \sin \frac{n^3 \pi}{n^2+1}$; ② $\sum_{n=1}^{\infty}(-1)^n\left(\frac{1}{\sqrt[3]{n^2}}-\tan \frac{1}{\sqrt[3]{n^2}}\right)$, 则
$\text{A.}$ ①②均条件收敛 $\text{B.}$ ①条件收敛②绝对收敛 $\text{C.}$ ①绝对收敛②条件收敛 $\text{D.}$ ①②均绝对收敛

设函数 $f(x)$ 在区间 $[0,+\infty)$ 上可导, 则
$\text{A.}$ 当 $\lim _{x \rightarrow+\infty} f(x)$ 存在时, $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在 $\text{B.}$ 当 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在时, $\lim _{x \rightarrow+\infty} f(x)$ 存在 $\text{C.}$ 当 $\lim _{x \rightarrow+\infty} \frac{\int_0^x f(t) d t}{x}$ 存在时, $\lim _{x \rightarrow+\infty} f(x)$ 存在. $\text{D.}$ 当 $\lim _{x \rightarrow+\infty} f(x)$ 存在时, $\lim _{x \rightarrow+\infty} \frac{\int_0^x f(t) d t}{x}$ 存在.

已知函数 $f(x)=\int_0^x e^{t^2} \sin t d t, g(x)=\int_0^x e^{r^2} d t \cdot \sin ^2 x$, 则 $(\quad)$
$\text{A.}$ $x=0$ 是 $f(x)$ 的极值点, 也是 $g(x)$ 的极值点 $\text{B.}$ $x=0$ 是 $f(x)$ 的极值点, $(0,0)$ 是曲线 $y=g(x)$ 的拐点 $\text{C.}$ $x=0$ 是 $f(x)$ 的极值点, $(0,0)$ 是曲线 $y=f(x)$ 的拐点 $\text{D.}$ $(0,0)$ 是曲线 $y=f(x)$ 的拐点, 也是曲线 $y=g(x)$ 的拐点

试卷二维码

分享此二维码到群,让更多朋友参与