单选题 (共 2 题 ),每题只有一个选项正确
设函数 $f(x)$ 在 $[0,1]$ 上 $f^{\prime \prime}(x)>0$ ,则 $f^{\prime}(0), f^{\prime}(1)$, $f(1)-f(0)$ 和 $f(0)-f(1)$ 的大小顺序是
$\text{A.}$ $f^{\prime}(1)>f^{\prime}(0)>f(1)-f(0)$
$\text{B.}$ $f^{\prime}(1)>f(1)-f(0)>f^{\prime}(0)$
$\text{C.}$ $f(1)-f(0)>f^{\prime}(1)>f^{\prime}(0)$
$\text{D.}$ $f^{\prime}(1)>f(0)-f(1)>f^{\prime}(0)$
在区间 $(-\infty, \infty)$ 内,方程 $|x|^{\frac{1}{4}}+|x|^{\frac{1}{2}}-\cos x=0$
$\text{A.}$ 无实根
$\text{B.}$ 有且仅有一个实根
$\text{C.}$ 有且仅有二个实根
$\text{D.}$ 有无穷多个实根