考研数学
重点科目
其它科目

科数网

0试卷具体名称

数学

单选题 (共 1 题 ),每题只有一个选项正确
数列 $1, \sqrt{2}, \sqrt[3]{3}, \cdots \cdots, \sqrt[n]{n} $ 的最大项为
$\text{A.}$ $\sqrt{2}$. $\text{B.}$ $\sqrt[3]{3}$. $\text{C.}$ $\sqrt[4]{4}$. $\text{D.}$ $\sqrt[5]{5}$

填空题 (共 3 题 ),请把答案直接填写在答题纸上
设 $\lim _{x \rightarrow 0} \frac{\ln \left[1+\frac{f(x)}{\sin x}\right]}{a^x-1}=\frac{1}{2}(a>0, a \neq 1)$, 求 $\lim _{x \rightarrow 0} \frac{f(x)}{x^2}$.

设 $a_n=\frac{3}{2} \int_0^{\frac{n}{n+1}} x^{n-1} \sqrt{1+x^n} \mathrm{~d} x$, 则 $\lim _{n \rightarrow \infty} n a_n=$

计算极限 $\lim _{x \rightarrow 0} \frac{\int_0^x\left[(3+2 \tan t)^t-3^t\right] \mathrm{d} t}{\mathrm{e}^{3 x^3}-1}$.

解答题 (共 2 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
数列 $x_n=n\left[\mathrm{e}\left(1+\frac{1}{n}\right)^{-n}-1\right]$, 则 $\lim _{n \rightarrow \infty} x_n=$

数列极限 $I=\lim _{n \rightarrow \infty} n^2\left(\arctan \frac{2}{n}-\arctan \frac{2}{n+1}\right)=$

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与