一、单选题 (共 3 题,每小题 5 分,共 50 分,每题只有一个选项正确)
函数 $f(x)=\dfrac{ e ^{\frac{1}{x-1}} \ln |1+x|}{\left( e ^x-1\right)(x-2)}$ 的第二类间断点的个数为
$\text{A.}$ 1.
$\text{B.}$ 2 .
$\text{C.}$ 3 .
$\text{D.}$ 4 .
设 $f(x)=\left\{\begin{array}{cc}\frac{1-\cos x}{\sqrt{x}}, & x>0, \\ x^2 g(x), & x \leqslant 0,\end{array}\right.$ 其中 $g(x)$ 是有界函数, 则 $f(x)$ 在 $x=0$ 处
$\text{A.}$ 极限不存在。
$\text{B.}$ 极限存在, 但不连续.
$\text{C.}$ 连续, 但不可导.
$\text{D.}$ 可导。
设 $f(x)$ 在 $x=a$ 处可导, 则 $\lim _{x \rightarrow 0} \frac{f(a+x)-f(a-x)}{x}$ 等于
$\text{A.}$ $f^{\prime}(a)$.
$\text{B.}$ $2 f^{\prime}(a)$.
$\text{C.}$ 0 .
$\text{D.}$ $f^{\prime}(2 a)$.
二、填空题 (共 2 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
求曲线 $y-x+e^y=0$ 在点 $x=1$ 处的切线方程
$\lim _{n \rightarrow \infty}\left(\cos \frac{1}{n}\right)^{n^2}=$
三、解答题 ( 共 7 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
I ) 设 $x>0$, 证明: 函数 $f(x)=\frac{\ln (1+x)-x}{x^2}$ 单调递增;
(II) 设 $0 < x < 1$, 证明不等式: $x-\frac{1}{2} x^2 < \ln (1+x) < x+(\ln 2-1) x^2$.
已知 $y=\left(1+x^2\right) \arctan x$, 求 $y^{\prime \prime}$
求函数 $f(x)=\left\{\begin{array}{ll}\frac{x^2+2 x}{\left(e^x-1\right)(x+2)}, & x < 0 \\ \frac{x}{x-1}, & x \geq 0\end{array}\right.$ 的间断点, 并判断类型。
设 $f(x)$ 为多项式,且 $\lim _{x \rightarrow \infty} \frac{f(x)-2 x^3}{x^2}=1, \lim _{x \rightarrow 0} \frac{f(x)}{x}=3$, 求 $f(x)$
数列 $\left\{x_n\right\}$ 满足: $x_1=\sqrt{2}, x_{n+1}=\sqrt{2+x_n}\left(n \in \mathbf{N}_{+}\right)$. 证明 $\lim _{n \rightarrow \infty} x_n$ 存在, 并求此极限.
(1) $\lim _{x \rightarrow \infty} \mathrm{e}^{\frac{1}{x}}$;
(2) $\lim _{x \rightarrow 0} \ln \frac{\sin x}{x}$;
(3) $\lim _{x \rightarrow \infty}\left(1+\frac{1}{x}\right)^{\frac{x}{2}}$;
(4) $\lim _{x \rightarrow 0}\left(1+3 \tan ^2 x\right)^{\cot ^2 x}$;
(6) $\lim _{x \rightarrow 0} \frac{\sqrt{1+\tan x}-\sqrt{1+\sin x}}{x \sqrt{1+\sin ^2 x}-x}$;
求数列极限 $\lim _{n \rightarrow \infty}\left(\frac{1}{2 n^2+1}+\frac{2}{2 n^2+2}+\cdots+\frac{n}{2 n^2+n}\right)$.