考研数学
重点科目
其它科目

科数网

1

高等数学自主练习(1)

单选题 (共 6 题 ),每题只有一个选项正确
若 $\lim _{x \rightarrow 0} \frac{\sin 6 x+x f(x)}{x^3}=0$, 则 $\lim _{x \rightarrow 0} \frac{6+f(x)}{x^2}$ 为
$\text{A.}$ 0 $\text{B.}$ 6 $\text{C.}$ 36 $\text{D.}$ $\infty$

当 $x \rightarrow 1$ 时, 函数 $\frac{x^2-1}{x-1} e ^{\frac{1}{x-1}}$ 的极限
$\text{A.}$ 等于 2 . $\text{B.}$ 等于 0 。 $\text{C.}$ 为 $\infty$ 。 $\text{D.}$ 不存在但不为 $\infty$

已知极限 $\lim _{x \rightarrow 0} \frac{x-\arctan x}{x^k}=c$, 其中 $k, c$ 为常数, 且 $c \neq 0$, 则
$\text{A.}$ $k=2, c=-\frac{1}{2}$. $\text{B.}$ $k=2, c=\frac{1}{2}$. $\text{C.}$ $k=3, c=-\frac{1}{3}$. $\text{D.}$ $k=3, c=\frac{1}{3}$.

设 $\lim _{x \rightarrow 0} \frac{\ln (1+x)-\left(a x+b x^2\right)}{x^2}=2$, 则
$\text{A.}$ $a=1, b=-\frac{5}{2}$. $\text{B.}$ $a=0, b=-2$. $\text{C.}$ $a=0, b=-\frac{5}{2}$. $\text{D.}$ $a=1, b=-2$.

. 当 $x \rightarrow 0$ 时, 若 $x-\tan x$ 与 $x^k$ 是同阶无穷小, 则 $k=$
$\text{A.}$ 1 . $\text{B.}$ 2 . $\text{C.}$ 3 . $\text{D.}$ 4 .

设函数 $f(x)=\frac{\ln |x|}{|x-1|} \sin x$, 则 $f(x)$ 有
$\text{A.}$ 有 1 个可去间断点, 1 个跳跃间断点. $\text{B.}$ 有 1 个可去间断点, 1 个无穷间断点. $\text{C.}$ 有两个无穷间断点. $\text{D.}$ 有两个跳跃间断点.

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与