单选题 (共 6 题 ),每题只有一个选项正确
已知极限 $\lim _{x \rightarrow 0} \frac{x-\arctan x}{x^k}=c$, 其中 $k, c$ 为常数, 且 $c \neq 0$, 则
$\text{A.}$ $k=2, c=-\frac{1}{2}$.
$\text{B.}$ $k=2, c=\frac{1}{2}$.
$\text{C.}$ $k=3, c=-\frac{1}{3}$.
$\text{D.}$ $k=3, c=\frac{1}{3}$.
设 $\lim _{x \rightarrow 0} \frac{\ln (1+x)-\left(a x+b x^2\right)}{x^2}=2$, 则
$\text{A.}$ $a=1, b=-\frac{5}{2}$.
$\text{B.}$ $a=0, b=-2$.
$\text{C.}$ $a=0, b=-\frac{5}{2}$.
$\text{D.}$ $a=1, b=-2$.
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内单调有界, $\left\{x_n\right\}$ 为数列, 下列命题正确的是
$\text{A.}$ 若 $\left\{x_n\right\}$ 收敛,则 $\left\{f\left(x_n\right)\right\}$ 收敛.
$\text{B.}$ 若 $\left\{x_n\right\}$ 单调, 则 $\left\{f\left(x_n\right)\right\}$ 收敛.
$\text{C.}$ 若 $\left\{f\left(x_n\right)\right\}$ 收敛, 则 $\left\{x_n\right\}$ 收敛。
$\text{D.}$ 若 $\left\{f\left(x_n\right)\right\}$ 单调, 则 $\left\{x_n\right\}$ 收敛.
设数列通项
$$x_n=\left\{\begin{array}{ll}
\frac{n^2+\sqrt{n}}{n}, & n \text { 为奇数, } \\
\frac{1}{n}, & n \text { 为偶数. }
\end{array}\right.
$$
则当 $n \rightarrow \infty$ 时, $ x_n$ 是
$\text{A.}$ 无穷大量.
$\text{B.}$ 无穷小量.
$\text{C.}$ 有界变量.
$\text{D.}$ 无界变量.
. 当 $x \rightarrow 0$ 时, 若 $x-\tan x$ 与 $x^k$ 是同阶无穷小, 则 $k=$
$\text{A.}$ 1 .
$\text{B.}$ 2 .
$\text{C.}$ 3 .
$\text{D.}$ 4 .
当 $x \rightarrow 0^{+}$时, 与 $\sqrt{x}$ 等价的无穷小量是
$\text{A.}$ $1- e ^{\sqrt{x}}$.
$\text{B.}$ $\ln \frac{1+x}{1-\sqrt{x}}$.
$\text{C.}$ $\sqrt{1+\sqrt{x}}-1$.
$\text{D.}$ $1-\cos \sqrt{x}$.