单选题 (共 6 题 ),每题只有一个选项正确
若 $\lim _{x \rightarrow 0} \frac{\sin 6 x+x f(x)}{x^3}=0$, 则 $\lim _{x \rightarrow 0} \frac{6+f(x)}{x^2}$ 为
$\text{A.}$ 0
$\text{B.}$ 6
$\text{C.}$ 36
$\text{D.}$ $\infty$
当 $x \rightarrow 1$ 时, 函数 $\frac{x^2-1}{x-1} e ^{\frac{1}{x-1}}$ 的极限
$\text{A.}$ 等于 2 .
$\text{B.}$ 等于 0 。
$\text{C.}$ 为 $\infty$ 。
$\text{D.}$ 不存在但不为 $\infty$
已知极限 $\lim _{x \rightarrow 0} \frac{x-\arctan x}{x^k}=c$, 其中 $k, c$ 为常数, 且 $c \neq 0$, 则
$\text{A.}$ $k=2, c=-\frac{1}{2}$.
$\text{B.}$ $k=2, c=\frac{1}{2}$.
$\text{C.}$ $k=3, c=-\frac{1}{3}$.
$\text{D.}$ $k=3, c=\frac{1}{3}$.
设 $\lim _{x \rightarrow 0} \frac{\ln (1+x)-\left(a x+b x^2\right)}{x^2}=2$, 则
$\text{A.}$ $a=1, b=-\frac{5}{2}$.
$\text{B.}$ $a=0, b=-2$.
$\text{C.}$ $a=0, b=-\frac{5}{2}$.
$\text{D.}$ $a=1, b=-2$.
. 当 $x \rightarrow 0$ 时, 若 $x-\tan x$ 与 $x^k$ 是同阶无穷小, 则 $k=$
$\text{A.}$ 1 .
$\text{B.}$ 2 .
$\text{C.}$ 3 .
$\text{D.}$ 4 .
当 $x \rightarrow 0^{+}$时, 与 $\sqrt{x}$ 等价的无穷小量是
$\text{A.}$ $1- e ^{\sqrt{x}}$.
$\text{B.}$ $\ln \frac{1+x}{1-\sqrt{x}}$.
$\text{C.}$ $\sqrt{1+\sqrt{x}}-1$.
$\text{D.}$ $1-\cos \sqrt{x}$.