科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

2

数学

一、单选题 (共 9 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设函数 $f(x, y)$ 连续, 则累次积分 $\int_0^1 \mathrm{~d} x \int_{x-1}^{\sqrt{x-x^2}} f(x, y) \mathrm{d} y$ 等于
$\text{A.}$ $\int_{-1}^1 {~d} y \int_0^{y+1} f(x, y) {d} x+\int_0^{\frac{1}{2}} {~d} y \int_0^{\frac{1}{2}-\sqrt{\frac{1}{4}-y^2}} {~d} x$ $\text{B.}$ $\int_{-1}^1 {~d} y \int_0^{y+1} f(x, y) {d} x+\int_0^{\frac{1}{2}} {~d} y \int_0^{\frac{1}{2}+\sqrt{\frac{1}{4}-y^2}} {~d} x$ $\text{C.}$ $\int_{-\frac{\pi}{2}}^0 {~d} \theta \int_0^{\frac{1}{\cos \theta-\sin \theta}} f(r \cos \theta, r \sin \theta) r {~d} r+\int_0^{\frac{\pi}{2}} {~d} \theta \int_0^{\cos \theta} f(r \cos \theta, r \sin \theta) r {~d} r$ $\text{D.}$ $\int_{-\frac{\pi}{2}}^0 \mathrm{~d} \theta \int_0^{\frac{1}{\cos \theta+\sin \theta}} f(r \cos \theta, r \sin \theta) r \mathrm{~d} r+\int_0^{\frac{\pi}{2}} {~d} \theta \int_0^{\sin \theta} f(r \cos \theta, r \sin \theta) r {~d} r$


设 $\Sigma$ 为曲面 $z=2-\left(x^2+y^2\right)$ 在 $x o y$ 平面上方的部分, 则 $I=\iint_{\Sigma} z d S=\begin{array}{ll}\quad \end{array}$
$\text{A.}$ $\int_1^{2 \pi} d \theta \int_0^{2-r^2}\left(2-r^2\right) \sqrt{1+4 r^2} r d r$ $\text{B.}$ $\int_0^2 d \theta \int_1^2\left(2-r^2\right) \sqrt{1+4 r^2} r d r$ $\text{C.}$ $\int_0^{2 \pi} d \theta \int_{-1}^{\sqrt{2}}\left(2-r^2\right) r d r$ $\text{D.}$ $\int_0^{2 \pi} d \theta \int_0^{\sqrt{2}}\left(2-r^2\right) \sqrt{1+4 r^2} r d r$


函数 $z=z(x, y)$ 由方程 $z^3-3 x y z=1$ 确定, 则 $\frac{\partial z}{\partial x}=$.
$\text{A.}$ $\frac{y z}{z^2-x y}$ $\text{B.}$ $\frac{-y z}{z^2-x y}$ $\text{C.}$ $\frac{z^2-x y}{y z}$ $\text{D.}$ $\frac{z^2-x y}{-y z}$


设区域 $D$ 由曲线 $y=\sin x, x= \pm \frac{\pi}{2}, y=1$ 围成, 则 $\iint_D\left(x y^5-1\right) \mathrm{d} x \mathrm{~d} y=$
$\text{A.}$ $\pi$. $\text{B.}$ $2$. $\text{C.}$ $-2$. $\text{D.}$ $-\pi$.


设函数 $f(u)$ 连续, 区域 $D=\left\{(x, y) \mid x^2+y^2 \leq 2 y\right\}$, 则 $\iint_D f(x y) \mathrm{d} x \mathrm{~d} y$ 等于
$\text{A.}$ $\int_{-1}^1 \mathrm{~d} x \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x y) \mathrm{d} y$ $\text{B.}$ $2 \int_0^2 \mathrm{~d} y \int_0^{\sqrt{2 y-y^2}} f(x y) \mathrm{d} x$. $\text{C.}$ $\int_0^\pi \mathrm{d} \theta \int_0^{2 \sin \theta} f\left(r^2 \sin \theta \cos \theta\right) \mathrm{d} r$. $\text{D.}$ $\int_0^\pi \mathrm{d} \theta \int_0^{2 \sin \theta} f\left(r^2 \sin \theta \cos \theta\right) r \mathrm{~d} r$.


二、填空题 (共 9 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $L$ 是直线 $y=x$ 上点 $O(0,0)$ 到点 $A(1,1)$ 的一段弧, 则 $\int_L(x+y) \mathrm{d} s=$



函数 $z=5 x^2 y$ 在点 $(1,0)$ 处沿方向 $\vec{l}=(3,-4)$ 的方向导数 $\frac{\partial z}{\partial l}=$



设 $z=z(x, y)$ 由方程 $x y z^2+\sqrt{x^2+y^2}+z=2$ 确定, 则 $\left.d z\right|_{\substack{x=1 \\ y z 0}}=$



三、解答题 ( 共 11 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
计算曲线积分 $I=\int_L \frac{4 x-y}{4 x^2+y^2} d x+\frac{x+y}{4 x^2+y^2} d y$, 其中 $L$ 是 $x^2+y^2=2$, 方向为逆时针方向



 

设函数 $f(x, y)$ 的全微分为 $\mathrm{d} f(x, y)=(2 a x+b y) \mathrm{d} x+(2 b y+a x) \mathrm{d} y(a, b$ 为常数), 且 $f(0,0)=-3, f_x^{\prime}(1,1)=3$.
(I) 求 $f(x, y)$;
(II) 求点 $(-1,-1)$ 到曲线 $f(x, y)=0$ 上的点的距离的最大值.



 

计算曲线积分 $\prod_L\left(x^2+y^2+z^2\right) \mathrm{d} s$, 其中
$$
L:\left\{\begin{array}{c}
x^2+y^2+z^2=\frac{9}{2}, \\
x+z=1 .
\end{array}\right.
$$



 

求曲线积分: $\int_L\left[\left(x^2+y^2\right)^2+y^2\right] \mathrm{d} s$ ,其中
$$
L: x^2+y^2=x
$$



 

设 $z=f\left(e^x \sin y, x^2+y^2\right), f$ 其有二阶连续偏导数, 求 $\frac{\partial z}{\partial y}$ 及 $\frac{\partial^2 z}{\partial x \partial y}$



 

设函数 $F(x, y)$ 具有一阶连续偏导数, $z=z(x, y)$ 是由方程 $F\left(\frac{x}{z}, \frac{y}{z}\right)=0$ 所确 定的隐函数, 试求表达式 $x \frac{\partial z}{\partial x}+y \frac{\partial z}{\partial y}$ 。



 

计算 $\iint_D y^5 \sqrt{1+x^2-y^6} d x d y$, 其中 $D$ 是由 $y=\sqrt[3]{x}, x=-1$ 及 $y=1$ 所围成的区域。



 

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与