科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

第三节   微分中值定理

数学

一、单选题 (共 3 题,每小题 5 分,共 50 分,每题只有一个选项正确)
$y=f(x)=\frac{\mathrm{e}^x+x \arctan x}{\mathrm{e}^x+x-1}$ 的渐近线条数是
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3


设 $a>\frac{\mathrm{e}^3}{4}$, 则方程 $a(x+1)^2 \mathrm{e}^x=1$ 的实根个数为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4


设函数 $f(x)$ 具有三阶导数, 且 $\lim _{x \rightarrow 0} \frac{f(x)-1}{\mathbf{e}^{x^3}-1}=-\frac{1}{2}$, 则
$\text{A.}$ $(0,1)$ 是曲线 $y=f(x)$ 的拐点. $\text{B.}$ $x=0$ 是函数 $f(x)$ 的极大值点. $\text{C.}$ $x=0$ 是函数 $f(x)$ 的极小值点. $\text{D.}$ 以上结论都不正确.


二、填空题 (共 5 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
求曲线 $y-x+e^y=0$ 在点 $x=1$ 处的切线方程



设函数 $y=f(x)$ 的参数方程为 $x=e^{-t}-1, y=t^2$ ,当 $-1 < x < 0$ 时,判断 $y=f(x)$ 的单调性和凹凸性



设函数 $y(x)$ 由参数方程 $\left\{\begin{array}{l}x=\ln \left(1+\mathrm{e}^t\right) \text {, } \\ y=-t^2+3\end{array}\right.$ 确定, 则曲线 $y=y(x)$ 在参数 $t=0$ 对应的点处的曲率 $k=$



设函数 $y=y(x)$ 由参数方程 $\left\{\begin{array}{l}x=\frac{3 t}{1+t^3}, \\ y=\frac{3 t^2}{1+t^3}\end{array}\right.$ 确定, 则曲线 $y=y(x)$ 的斜渐近线方程为



(1) $a_{n+1}-a_n=e^{-a_n}, a_0=1$, 证明 $a_n-\ln n$ 收敛.
(2) 设 $f(x)$ 为单调递增函数, 且 $f^{\prime}(x)$ 有界,
$$
f(\mathbf{0})=\mathbf{0}, \lim _{x \rightarrow+\infty} f(x)=+\infty .
$$
设 $\boldsymbol{F}(x)=\int_0^x f(x) \mathrm{d} x$ ,数列 $\left\{a_n\right\}$ 满足:
$$
a_0=1, a_{n+1}=a_n+\frac{1}{f\left(a_n\right)}, b_n=F^{-1}(n) .
$$
证明: $\lim _{n \rightarrow \infty}\left(a_n-b_n\right)=\mathbf{0}$.



三、解答题 ( 共 4 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
若 $f(x)$ 为 $[0,1]$ 上的单调增加的连续函数, 证明:
$$
\frac{\int_0^1 x f^3(x) d x}{\int_0^1 x f^2(x) d x} \geq \frac{\int_0^1 f^3(x) d x}{\int_0^1 f^2(x) d x} .
$$



 

证明方程 $x=a \sin x+b$, 其中 $a>0, b>0$, 至少有一个正根, 并且它不超过 $a+b$.



 

证明方程 $x^3+2 x^2-4 x-1=0$ 有三个实根.



 

证明方程 $\sin x+x+1=0$ 在开区间 $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ 内至少有一个根.



 

试卷二维码

分享此二维码到群,让更多朋友参与