一、单选题 (共 1 题 ),每题只有一个选项正确
1. 一) 在假设检验中, 显著性水平 的意义是
原假设 成立, 经检验被拒绝的概率
原假设 成立, 经检验被接受的概率
原假设 不成立, 经检验被拒绝的概率
原假设 不成立, 经检验被接受的概率
二、填空题 (共 1 题 ),请把答案直接填写在答题纸上
2. 设 为三个事件, 用 的运算关系表示下列各事件:
(1) 发生, 与 不发生.
(2) 与 都发生,而 不发生.
(3) 中至少有一个发生.
(4) 都发生.
(5) 都不发生.
(6) 中不多于一个发生.
(7) 中不多于两个发生.
(8) 中至少有两个发生.
三、解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
3. 已知总体 的概率密度为
,其他
其中 是未知参数, 设 为来自总体 的简单随机样本, 求 的矩估计量和最大似然估计量.
4. 设总体 的概率密度为
其他
是取自总体 的简单随机样本. 求:
(1) 的矩估计量 ;
(2) 的方差 .
5. 设总体 的概率密度为 其他 其中 未知, 是来自总体 的简单随机样本.
(1) 求 ;
(2) 求 的最大似然估计量 .6.11 解 (1) .
(2) 当 时, 似然函数为
显然 关于 单调减少, 且 , 则 的最大似然估计量为
又由 (1) 知 关于 是单调函数, 根据最大似然估计的不变性, 有 的最大似然估计量为