科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

第一次阶段性检测

数学

一、单选题 (共 11 题,每小题 5 分,共 50 分,每题只有一个选项正确)
已知当 $x \rightarrow 0$ 时, 函数 $f(x)=3 \sin x-\sin 3 x$ 与 $c x^k$ 是等价无穷小, 则
$\text{A.}$ $k=1, c=4$. $\text{B.}$ $k=1, c=-4$. $\text{C.}$ $k=3, c=4$. $\text{D.}$ $k=3, c=-4$.


设 $1 < x < 3$, 则极限 $\lim _{n \rightarrow \infty} \sqrt[n]{2024+x^n+x^{2 n}+\frac{1}{3^n} x^{3 n}}=$
$\text{A.}$ 1 $\text{B.}$ $x$. $\text{C.}$ $x^2$. $\text{D.}$ $\frac{x^3}{3}$.


设函数 $f(x)$ 在 $(0,+\infty)$ 内可导, 则下列命题中, 正确的个数是
(1) 若 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$.
(2) 若 $\lim _{x \rightarrow 0^{+}} f^{\prime}(x)=\infty$, 则 $\lim _{x \rightarrow 0^{+}} f(x)=\infty$.
(3) 若 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限.
(4) 若 $\lim _{x \rightarrow+\infty} f^{\prime}(x)$ 存在且有限, 则 $\lim _{x \rightarrow+\infty} f(x)$ 存在且有限.
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4


设函数 $f(x)$ 在 $(-\infty,+\infty)$ 内单调有界, $\left\{x_n\right\}$ 为数列, 下列命题正确的是
$\text{A.}$ 若 $\left\{x_n\right\}$ 收敛, 则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{B.}$ 若 $\left\{x_n\right\}$ 单调, 则 $\left\{f\left(x_n\right)\right\}$ 收敛 $\text{C.}$ 若 $\left\{f\left(x_n\right)\right\}$ 收敛, 则 $\left\{x_n\right\}$ 收敛. $\text{D.}$ 若 $\left\{f\left(x_n\right)\right\}$ 单调, 则 $\left\{x_n\right\}$ 收敛.


当 $x \rightarrow 0^{+}$时, 与 $\sqrt{x}$ 等价的无穷小量是
$\text{A.}$ $1-\mathrm{e}^{\sqrt{x}}$. $\text{B.}$ $\sqrt{1+\sqrt{x}}-1$. $\text{C.}$ $\ln \frac{1+x}{1-\sqrt{x}}$. $\text{D.}$ $1-\cos \sqrt{x}$.


设函数$f(x)$在$R$上处处有定义,且$f(0)=0$,则下列命题错误的是
$\text{A.}$ 当 $x \rightarrow 0$ 时,若 $f(x) \sim \sin ^2 x$, 则 $f^{\prime}(0)$ 存在. $\text{B.}$ 若 $0 \leqslant f(x) \leqslant \sin ^2 x$ 恒成立, 则 $f^{\prime}(0)$ 存在. $\text{C.}$ 若在 $[0,+\infty)$ 上 $g(x) \leqslant f(x) \leqslant h(x)$, 在 $(-\infty, 0)$ 上 $h(x) \leqslant f(x) \leqslant g(x)$, 且当 $x \rightarrow 0$时, 函数 $g(x)$ 和 $h(x)$ 都是 $x$ 的同阶无穷小, 则 $f(x)$ 也是 $x$ 的同阶无穷小. $\text{D.}$ 当 $x \rightarrow 0$ 时,若 $f^{\prime}(0)$ 存在且不为 0 ,则 $f(x)$ 是 $x$ 的同阶无穷小.


设函数 $f(x)$ 满足 $f(0)=0$, 则 $f(x)$ 在 $x=0$ 处可导的充分必要条件为
$\text{A.}$ $\lim _{h \rightarrow 0} \frac{f(\tan h-h)}{h^3}$ 存在. $\text{B.}$ $\lim _{h \rightarrow 0} \frac{f(\ln (1+h)-h)}{h^2}$ 存在. $\text{C.}$ $\lim _{h \rightarrow 0} \frac{f(\arctan h-h)}{h}$ 存在. $\text{D.}$ $\lim _{h \rightarrow 0} \frac{f(h)-f(-h)}{h}$ 存在.


已知 $a, b$ 均为常数, 且 $\lim _{x \rightarrow+\infty}\left(1+\frac{1}{x}\right)^{x^2}\left[\int_0^{\sqrt{x}} \mathrm{e}^{-t^2} \mathrm{~d} t+a\right]=b$, 则
$\text{A.}$ $a$ 为任意常数, $b=0$ $\text{B.}$ $a$ 为任意常数, $b=-1$ $\text{C.}$ $a=-\frac{\sqrt{\pi}}{2}, b=0$ $\text{D.}$ $a=-\frac{\sqrt{\pi}}{2}, b=-1$


设 $f(x)=\int_x^{x^2}\left(1+\frac{1}{t}\right)^t \cdot \frac{1}{\sqrt{t}} \mathrm{~d} t, x>1$, 则当 $n \rightarrow \infty$ 时, $\frac{1}{f(n)}$ 是 $\frac{1}{n}$ 的
$\text{A.}$ 等价无穷小量. $\text{B.}$ 同阶非等价无穷小量. $\text{C.}$ 高阶无穷小量. $\text{D.}$ 低阶无穷小量.


设函数 $f(x)$ 在闭区间 $[0,1]$ 上连续, $\int_0^1 f(x) \mathrm{d} x=4$, 则 $\int_0^1\left[f(x) \int_x^1 f(t) \mathrm{d} t\right] \mathrm{d} x=$
$\text{A.}$ 2 $\text{B.}$ 4 $\text{C.}$ 8 $\text{D.}$ 16


设 $f(x)$ 满足 $\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2 x}-1}{e^{x^2}-1}=1$, 则
$\text{A.}$ $f(0)=0$ $\text{B.}$ $\lim _{x \rightarrow 0} f(x)=0$ $\text{C.}$ $f^{\prime}(0)=1$ $\text{D.}$ $\lim _{x \rightarrow 0} f^{\prime}(x)=1$


二、填空题 (共 2 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $f(x)$ 在 $[1,+\infty)$ 上具有连续导数, $f(1)=1, g(x)$ 为 $f(x)$ 的反函数, 且满足 $\int_1^{f(x)} g(t) \mathrm{d} t=$ $x \ln x$, 则在 $[1,+\infty)$ 上 $f(x)=$



求极限 $\lim _{x \rightarrow+\infty} \frac{\ln \left(x^2+3 x+1\right)}{\ln \left(x^3+2 x+1\right)}$;



三、解答题 ( 共 4 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求极限 $\lim _{n \rightarrow \infty} n\left(\frac{1}{n^2+\pi}+\frac{1}{n^2+2 \pi}+\cdots+\frac{1}{n^2+n \pi}\right)$.



 

求极限 $\lim _{x \rightarrow 0} \frac{3 \sin x-x^2 \cos \frac{1}{x}}{\left(e^{-x}-1\right)(1+\cos x)}$.



 

$\lim _{x \rightarrow 0^{+}}(\cos (\sqrt{x}))^{\frac{1}{x}}$.



 

若 $\lim _{x \rightarrow 1} \frac{\sqrt{x^4+3}-\left[A+B(x-1)+C(x-1)^2\right]}{(x-1) \sin (x-1)}=0$, 求常数 $A, B, C$ 。



 

试卷二维码

分享此二维码到群,让更多朋友参与