科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

yan1

数学

一、单选题 (共 19 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $X_1, X_2$ 是来自总体 $X$ 的样本, 作为 $E X$ 的无偏估计中, 最有效的是
$\text{A.}$ $\frac{3}{5} X_1+\frac{2}{5} X_2$, $\text{B.}$ $\frac{1}{4} X_1+\frac{3}{4} X_2$ $\text{C.}$ $\frac{1}{3} X_1+\frac{2}{3} X_2$ $\text{D.}$ $\frac{1}{2} X_1+\frac{1}{2} X_2$


设 $X_1, X_2, \cdots, X_n$ 是取自二项总体 $B\left(5, \frac{1}{3}\right)$ 的简单随机样本, $\bar{X}=$ $\frac{1}{n} \sum_{i=1}^n X_i$ 是其样本均值, 则
$\text{A.}$ $\operatorname{Cov}\left(X_i, \bar{X}\right)=\frac{5}{3 n}$ $\text{B.}$ $\operatorname{Cov}\left(X_i, \bar{X}\right)=\frac{10}{9 n}$ $\text{C.}$ $D\left(X_i+\bar{X}\right)=\frac{5(n+2)}{3 n}$ $\text{D.}$ $D\left(X_i-\bar{X}\right)=\frac{10(n+2)}{9 n}$


设 $X_1, X_2, \ldots, X_n(n \geq 3)$ 为来自总体 $X$ 的一个简单随机样本, 则下列估计量中不是总体期望 $\mu$ 的无偏估计量的是
$\text{A.}$ $\bar{X}$ $\text{B.}$ $0.1 \times\left(6 X_1+4 X_2\right)$ $\text{C.}$ $X_1+X_2+\cdots+X_n$ $\text{D.}$ $X_1+X_2-X_3$


已知 $E X=-1, D X=3$ ,则 $E\left[3\left(X^2-2\right)\right]=$
$\text{A.}$ 9 $\text{B.}$ 6 $\text{C.}$ 30 $\text{D.}$ 36


设总体 $Z=X \cos Y$, 其中 $X \sim E(\lambda), Y \sim U(0, a), X$ 与 $Y$ 相互独立, $a$ 为已知参数, $\lambda$ 为末知 参数. 若要利用 $Z$ 的一阶矩对参数 $\lambda$ 进行矩估计, 则下列 $a$ 的四种取值中, 使得矩估计法可行 的是
$\text{A.}$ $a=\frac{\pi}{2}$. $\text{B.}$ $a=\pi$. $\text{C.}$ $a=2 \pi$. $\text{D.}$ $a=4 \pi$.


设 $X_1, X_2, \cdots, X_n$ 是来自总体 $N(0,1)$ 的简单随机样本, 记 $\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i$, 则 $D\left(\bar{X}^2\right)=$
$\text{A.}$ $\frac{1}{n^2}$. $\text{B.}$ $\frac{2}{n^2}$. $\text{C.}$ $\frac{3}{n^2}$. $\text{D.}$ $\frac{4}{n^2}$.


设 $X_1, X_2, \cdots, X_n$ 是来自正态总体 $N\left(\mu, \sigma^2\right)$ 的简单随机样本, 其中 $\mu$ 为已知常数,记 $\bar{X}$ 和 $S^2$ 分别为样本均值和样本方差, 则下列统计量中与 $\bar{X}$ 不独立的是
$\text{A.}$ 样本标准差 $\text{B.}$ $\frac{1}{n} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2$ $\text{C.}$ $\frac{1}{n} \sum_{i=1}^n\left(X_i-\mu\right)^2$ $\text{D.}$ $X_1-X_2$


设随机变量 $X \sim U(0,3)$, 随机变量 $Y \sim \lambda(2)$, 且 $X, Y$ 的协方差 $\operatorname{cov}(X, Y)=-1$, 则 $D(2 X-Y+1) $
$\text{A.}$ 1 $\text{B.}$ 5 $\text{C.}$ 9 $\text{D.}$ 12


设随机变量 $X_1, X_2, \cdots, X_n$ 独立同分布, 且 $X_1$ 的 4 阶矩存在, 记 $E\left(X_1^k\right)=\mu_k(k=1,2,3,4)$,则由切比雪夫不等式, 对任意由 $\varepsilon>0$ 有 $P\left\{\left|\frac{1}{n} \sum_{i=1}^n X_i^2-\mu_2\right| \geq \varepsilon\right\} \leq $.
$\text{A.}$ $ \frac{\mu_4-\mu_2^2}{n \varepsilon^2}$ $\text{B.}$ $\frac{\mu_4-\mu_2^2}{\sqrt{n} \varepsilon^2}$ $\text{C.}$ $\frac{\mu_2-\mu_1^2}{n \varepsilon^2}$ $\text{D.}$ $\frac{\mu_2-\mu_1^2}{\sqrt{n} \varepsilon^2}$


设 $X \sim N(0,1)$, 在 $X=x$ 的条件下, 随机变量 $Y \sim N(x, 1)$, 则 $X$ 与 $Y$ 的相关系数 $\rho_{x y}$
$\text{A.}$ $\frac{1}{4}$ $\text{B.}$ $\frac{1}{2}$ $\text{C.}$ $\frac{\sqrt{3}}{3}$ $\text{D.}$ $\frac{\sqrt{2}}{2}$


设总体 $X$ 服从正态分布 $N\left(\mu, \sigma^2\right)(\sigma>0), X_1, X_2, \cdots, X_{2 n}(n \geq 2)$ 为来自该总体的简单随机样本, 其样本均值为 $\bar{X}=\frac{1}{2 n} \sum_{i=1}^{2 n} X_i$. 记统计量
$$
Y_1=\sum_{i=1}^{2 n}\left(X_i-\bar{X}\right)^2, Y_2=\sum_{i=1}^n\left(X_i-X_{n+i}\right)^2, Y_3=\sum_{i=1}^n\left(X_i+X_{n+i}-2 \bar{X}\right)^2,
$$

则这 3 个统计量的数学期望 $E\left(Y_1\right), E\left(Y_2\right), E\left(Y_3\right)$ 的大小关系为
$\text{A.}$ $E\left(Y_1\right)>E\left(Y_2\right)>E\left(Y_3\right)$ $\text{B.}$ $E\left(Y_1\right)>E\left(Y_3\right)>E\left(Y_2\right)$ $\text{C.}$ $E\left(Y_3\right)>E\left(Y_1\right)>E\left(Y_2\right)$ $\text{D.}$ $E\left(Y_2\right)>E\left(Y_1\right)>E\left(Y_3\right)$


已知随机变量 $X$ 的分布函数 $F(x)=\left\{\begin{array}{ll}0, & x < 0, \\ 1-\frac{1}{2^{n+1}}, & n \leqslant x < n+1, n=0,1,2, \cdots,\end{array}\right.$ 则方差 $D X=(\quad)$.
$\text{A.}$ 3 $\text{B.}$ 1 $\text{C.}$ 0 $\text{D.}$ 2


设随机变量 $X$ 在区间 $(1,2)$ 内服从均匀分布, 在 $X=x$ 的条件下, 随机变量 $Y$ 服从参数为 $x$ 的指数分布. 则 $E(X Y)=$
$\text{A.}$ 4 $\text{B.}$ 3 $\text{C.}$ 2 $\text{D.}$ 1


设总体 $X$ 服从正态分布 $N\left(\mu, \sigma^2\right)(\sigma>0), X_1, X_2, \cdots, X_{2 n}(n \geq 2)$ 为来自该总体的简单随机样本, 其样本均值为 $\bar{X}=\frac{1}{2 n} \sum_{i=1}^{2 n} X_i$. 记统计量
$$
Y_1=\sum_{i=1}^{2 n}\left(X_i-\bar{X}\right)^2, Y_2=\sum_{i=1}^n\left(X_i-X_{n+i}\right)^2, Y_3=\sum_{i=1}^n\left(X_i+X_{n+i}-2 \bar{X}\right)^2 \text {, }
$$

则这 3 个统计量的数学期望 $E\left(Y_1\right), E\left(Y_2\right), E\left(Y_3\right)$ 的大小关系为
$\text{A.}$ $E\left(Y_1\right)>E\left(Y_2\right)>E\left(Y_3\right)$ $\text{B.}$ $E\left(Y_1\right)>E\left(Y_3\right)>E\left(Y_2\right)$ $\text{C.}$ $E\left(Y_3\right)>E\left(Y_1\right)>E\left(Y_2\right)$ $\text{D.}$ $E\left(Y_2\right)>E\left(Y_1\right)>E\left(Y_3\right)$


设总体 $X \sim N(\mu, 1), Y \sim N(\mu, 1)$, 且 $X, Y$ 相互独立, $X_1, X_2, \cdots, X_n$ 与 $Y_1, Y_2, \cdots, Y_n$ 分别来自总体 $X, Y$ 的简单随机样本, 设 $X=\frac{1}{n} \sum_{i=1}^n X_i, Y=\frac{1}{n} \sum_{i=1}^n Y_i, S_X^2=\frac{1}{n-1} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2$, $S_Y^2=\frac{1}{n-1} \sum_{i=1}^n\left(Y_i-\bar{Y}\right)^2$, 则 $\frac{\sqrt{n}(\bar{X}-\bar{Y})}{\sqrt{S_X^2+S_Y^2}}$ 服从
$\text{A.}$ $t(n-1)$ $\text{B.}$ $t(n)$ $\text{C.}$ $t(2 n)$ $\text{D.}$ $t(2 n-2)$


设总体 $X$ 服从正态分布 $N\left(\mu, \sigma^2\right)$, 其中 $\mu$ 已知, $\sigma^2$ 未知. $X_1, X_2, \cdots, X_n$ 是取自总体 $X$ 的简单随机样本, 则下列样本函数中不是统计量的是
$\text{A.}$ $\frac{1}{n} \sum_{i=1}^n X_i$ $\text{B.}$ $\max _{1 \leq \leqslant n}\left\{X_i\right\}$ $\text{C.}$ $\sum_{i=1}^n\left(\frac{X_i-\mu}{\sigma}\right)^2$ $\text{D.}$ $\frac{1}{n} \sum_{i=1}^n\left(X_i-\mu\right)^2$


设总体 $X$ 与 $Y$ 相互独立且都服从正态分布 $N\left(\mu, \sigma^2\right), \bar{X}, \bar{Y}$ 是分别来自总体 $X, Y$, 容量都为 $n$的样本的样本均值, 则当 $n$ 固定时, 概率 $P\{|\bar{X}-\bar{Y}|>\sigma\}$ 的值随 $\sigma$ 的增大而
$\text{A.}$ 单调增大 $\text{B.}$ 单调减小 $\text{C.}$ 保持不变 $\text{D.}$ 增减不定


设总体 $X \sim N\left(\mu_1, 4\right), Y \sim N\left(\mu_2, 5\right), X$ 与 $Y$ 相互独立, $X_1, \cdots, X_8$ 和 $Y_1, \cdots, Y_{10}$ 是分别来自总体 $X$ 和 $Y$ 的两个样本, $S_X^2$ 与 $S_Y^2$ 分别为两个样本的样本方差, 则
$\text{A.}$ $\frac{2 S_X^2}{5 S_Y^2} \sim F(7,9)$ $\text{B.}$ $\frac{5 S_X^2}{2 S_Y^2} \sim F(7,9)$ $\text{C.}$ $\frac{4 S_X^2}{5 S_Y^2} \sim F(7,9)$ $\text{D.}$ $\frac{5 S_X^2}{4 S_Y^2} \sim F(7,9)$


设 $X_1, X_2, X_3, X_4$ 为来自总体 $N\left(0, \frac{1}{2}\right)$ 的简单随机样本, 则统计量 $Y=\frac{X_1-X_2}{\sqrt{X_3^2+X_4^2}}$ 服从
$\text{A.}$ $N(0,1)$ $\text{B.}$ $\chi^2(2)$ $\text{C.}$ $t(2)$ $\text{D.}$ $F(2,2)$


二、填空题 (共 11 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设随机变量 $X$ 服从参数为 2 的泊松分布, $Y=3 X-2$, 则 $E(X Y)=$



设总体 $X$ 服从期望为 2 的指数分布, $X_1, X_2, \ldots, X_n$ 是来自总体 $X$ 的简单随机样本, $\bar{X}=\frac{1}{n} \sum_{i=1}^n X_i$, 则统计量 $\frac{1}{n-1} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2$ 的数学期望为



从正态总体 $N\left(\mu, 0.1^2\right)$ 随机抽取的容量为 16 的简单随机样本, 测得样本均值 $\overline{\boldsymbol{x}}=\mathbf{5}$, 则末知参数 $\mu$ 的置信度为 0.95 的置信区间是 (用抽样分布的上侧分位点表示).



设点 $P$ 的坐标 $(X, Y)$ 服从单位圆盘 $D: x^2+y^2 \leqslant 1$ 上的均匀分布, 以点 $P$ 为圆心, 作能够 包含于 $D$ 的最大圆, 记此圆的最高点的纵坐标为 $H$, 则 $H$ 的数学期望为



在单位圆盘 $\left\{(x, y): x^2+y^2 \leq 1\right\}$ 上随机取两个点, 以随机变量 $X$ 表示它们之间的距离, 则 $\mathrm{E}\left(X^2\right)=$



对一正态总体 $N(\mu, 100)$ 的均值 $\mu$ 求置信水平为 $95 \%$ 的置信区间, 若要求其区间长度不大于 4 , 则样本容量 $n$ 至少应取



袋中有 4 个球, 其中有 2 个白球和 2 个黑球, 从中任意取出 2 个球, 如果取出的 2 个球中恰好是 1 个白球和 1 个黑球就停止试验, 否则将这 2 个球放回袋中重新抽取 2 个球, 直到取到 1 个白球和 1 个黑球为止. 用 $X$ 表示抽取次数, 则数学期望 $E X=$



袋中有 4 个球,其中有 2 个白球和 2 个黑球, 从中任意取出 2 个球,如果取出的 2 个球中恰好是 1 个白球和 1 个黑球就停止试验,否则将这 2 个球放回袋中重新抽取 2 个球, 直到取到 1 个白球和 1 个照球为止. 用 $X$ 表示抽取次数, 则数学期望 $E X=$



设 $x_1, x_2, \cdots, x_{10}$ 为来自总体 $X$ 的样本, 且 $X \sim N\left(1,2^2\right), \bar{x}$ 为样本均值,则 $D(\bar{x})=$



设一元线性回归模型为 $y_i=\beta_0+\beta_1 x_i+\varepsilon_i, i=1,2, \cdots, n$, 则 $E\left(\varepsilon_i\right)=$.



设总体 $X$ 的概率密度为 $f(x)=\frac{1}{2} \mathrm{e}^{-x \mid}(-\infty < x < +\infty), X_1, X_2, \cdots, X_n$ 为来自总体 $X$ 的简单随机样本, 其样本方差为 $S^2$, 则 $E\left(S^2\right)=$



三、解答题 ( 共 10 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设随机变量 $X$ 的概率密度函数为 $f_X(x)=\left\{\begin{array}{ll}\lambda \mathrm{e}^{-\lambda(x+2)}, & x \geqslant-2 \\ 0, & x < -2\end{array}\right.$ 。设 $Y=[X]$, 其中 $[x]$ 为不超 过 $x$ 的最大整数。
(1) 求 $Y$ 的分布律;
(2) 设 $\left(Y_1, Y_2, \cdots, Y_n\right)$ 为来自总体 $Y$ 的简单随机样本, $\bar{Y}=\frac{1}{n} \sum_{i=1}^n Y_i$, 求 $\lambda$ 的矩估计量 $\hat{\lambda}_M$ 和最 大似然估计量 $\hat{\lambda}_{L^{\circ}}$ 。



 

一学校有 1000 名住校生,每人都以 $80 \%$ 的概率去图书馆上自习,用中心极限定理求:图书馆至少应设 置多少个座位,才能以 $99 \%$ 的概率保证去上自习的学生都有座位? $(\Phi(2.33)=0.99)$



 

已知随机变量 $X$ 分布律为

求 $E(X), D(X)$.



 

游客乘电梯由底层到电视塔顶层观光,电 梯于每个整点的第 5 分钟、第 25 分钟和第 55 分钟从电梯底层 起行,假设一位乘客于上午 8 时第 $\boldsymbol{X}$ 分到达电梯底层候梯处, 且随机变量 $X$ 服从区间 $[0,60]$ 上的均匀分布, 试求该乘客等候 时间的数学期望.



 

已知一批零件的长度 $X$ (单位: $\mathrm{cm}$ )服从正态分布 $N(\mu, 1)$, 从中随机抽取 16 个零件, 得到长度的平均值为 $40 \mathrm{~cm}$, 试求 $\mu$ 的置信水平为 0.95 的置信区间?



 

设 $X_1, \ldots, X_n$ 是来自总体 $X$ 的独立同分布样本, 且都只取正值, 试求数学期望:
$$
E\left(\frac{X_1}{\sum_{i=1}^n X_i}\right) .
$$



 

经大量调查, 已知一般健康成年男子每分钟脉搏的次数服从正态分布 $N\left(72,6^2\right)$.现测得 16 例成年男子慢性铅中毒患者的脉搏平均 67 次/分钟, 标准差为 7 次/分钟.问在显著性水平 0.05 下, 这群患者每分钟脉搏的次数(假设也服从正态分布) 和正常人有无显著性差异? (要求对均值和方差都进行检验.)



 

设随机变量 $X$ 服从 $e(2)$, 则 $E X^2=$



 

一汽车沿一街道行使, 需要通过三个均没有红绿灯信号灯的路口, 每个信号灯为红或绿与其他信号灯为红或绿相互独立, 求红或绿两种信号灯显示的时间相等。以 $X$ 表示该汽车未遇红灯而连续通过的路口数。
求 (1) $X$ 的概率分布;
(2)
$$
E\left(\frac{1}{1+X}\right)
$$



 

已知 $X_1, X_2, \cdots, X_n$ 是来自正态总体 $N\left(0, \sigma^2\right)$ 容量为 $n(n>1)$ 的简单随机样本, 样本均值与方差分别为 $\bar{X}, S^2$. 记 $\hat{\sigma}^2=(n-1) \bar{X}^2+\frac{1}{n} S^2$, 试求统计量 $\hat{\sigma}^2$ 的期望 $E \hat{\sigma}^2$ 与方差 $D \hat{\sigma}^2$.



 

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与