科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

kao1

数学

一、单选题 (共 9 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $f(x)$ 满足 $f^{\prime}(0)=0, f^{\prime}(x)+[f(x)]^3=x^2$, 则
$\text{A.}$ $f(0)$ 是 $f(x)$ 的极大值. $\text{B.}$ $f(0)$ 是 $f(x)$ 的极小值. $\text{C.}$ $(0, f(0))$ 是曲线 $y=f(x)$ 的拐点. $\text{D.}$ $f(0)$ 不是 $f(x)$ 的极值, $(0, f(0))$ 也不是曲线 $y=f(x)$ 的拐点.


点 $P(1,0,1)$ 到直线 $\left\{\begin{array}{l}x-y-z+1=0, \\ x+y-3 z=0\end{array}\right.$ 的距离 $d=$ (  )
$\text{A.}$ $\frac{\sqrt{2}}{3}$. $\text{B.}$ $\frac{\sqrt{3}}{2}$. $\text{C.}$ $\sqrt{2}$. $\text{D.}$ $\sqrt{3}$.


设函数 $f(x, y)$ 连续, $f(0,0)=0$, 又设 $F(x, y)=|x-y| f(x, y)$, 则 $F(x, y)$ 在点 $(0,0)$处
$\text{A.}$ 连续; 但不可微. $\text{B.}$ 连续, 但偏导数不存在. $\text{C.}$ 偏导数存在, 但不可微. $\text{D.}$ 可微.


若 $\lim _{(x, y) \rightarrow(0,0)} \frac{f(x, y)-f(0,0)-x^3-2 y^3}{1-\cos \sqrt{x^2+y^2}}=2$, 则下列结论不正确的是
$\text{A.}$ $f(x, y)$ 在 $(0,0)$ 点连续. $\text{B.}$ $f_x^{\prime}(0,0)=f_y^{\prime}(0,0)=0$. $\text{C.}$ $f(x, y)$ 在 $(0,0)$ 处可微. $\text{D.}$ $f(x, y)$ 在点 $(0,0)$ 处取极大值.


函数 $y=\frac{(x+1)^2}{x}$ 的图形有 $n$ 条渐近线, 则 $n=$ (  )
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3


设函数 $y=y(x)$ 由方程 $\ln \left(x^2+y^2\right)=\arctan \frac{y}{x}$ 确定, 且满足 $y(1)=0$, 则 $y^{\prime \prime}(1)=$ (  )
$\text{A.}$ 0 $\text{B.}$ $\frac{1}{2}$. $\text{C.}$ 10 $\text{D.}$ 20


曲线 $y=x \ln \left(\mathrm{e}+\frac{1}{x}\right) \quad(x>0)$ 的渐近线条数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3


设函数 $f(x)$ 可导, 且 $f^{\prime}(x)>0, g(x)=\int_0^x f(t) \mathrm{d} t$. 若 $g(1)=1, g(3)=7$, 则 $g(2)$ 的值可能为
$\text{A.}$ 2 $\text{B.}$ 3 $\text{C.}$ 4 $\text{D.}$ 5


已知曲面 $z=4-x^2-y^2$ 上点 $P$ 处的切平面平行于平面 $2 x+2 y+z-1=0$, 则点 $P$ 的坐标是
$\text{A.}$ $(1,-1,2)$ $\text{B.}$ $(-1,1,2)$ $\text{C.}$ $(1,1,2)$ $\text{D.}$ $(-1,-1,2)$


二、填空题 (共 17 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
曲线 $\left\{\begin{array}{l}x=\int_0^{1-t} \mathrm{e}^{-u^2} \mathrm{~d} u \\ y=t^2 \ln \left(2-t^2\right)\end{array}\right.$ 在点 $(0,0)$ 处的切线方程为



设 $y=\sin ^2x$, 则 $y^{(8)}(0)=$ ________ .



曲线 $y=x \ln \left(\mathrm{e}+\frac{1}{x}\right)(x>0)$ 的渐近线方程为



已知可微函数 $f(x, y)$ 满足 $f(t x, t y)=t f(x, y), t>0$, 且 $f_1(1,-2)=4$, 则曲面 $z=$ $f(x, y)$ 在点 $P_0(1,-2,2)$ 处的切平面方程为



已知函数 $f(x)=\frac{x+2}{(1-x)^4}$, 则 $f^{(5)}(0)=$



设 $n \geqslant 1$ 为自然数, $f(x)=\left(x^3-1\right)^n(\arctan x)^2$, 则 $f^{(n)}(1)=$



设曲面 $\Sigma: x^2-x y z+\mathrm{e}^{x+z}=1$ 上点 $(0,1,0)$ 处的法向量 $n$ 指向下方, 则函数 $f(x, y, z)$ $=x^2+2 y^2+3 z^2$ 在点 $(1,1,1)$ 处沿着 $n$ 的方向导数为



设有一底面半径为 $r$, 高为 $h$ 的圆椎型容器, 该容器将圆椎顶点朝下放置. 从装满水的容器中将水全部抽出需克服重力做功 $W_1$, 从初始液面高度为 $\frac{h}{3}$ 的容器中将水全部抽出需克服重力做功 $W_2$, 则 $\frac{W_1}{W_2}=$



设 $n \geqslant 1$ 为自然数, $f(x)=\left(x^3-1\right)^n(\arctan x)^2$, 则 $f^{(n)}(1)=$



求 $f(x)=\left|x e^{-x}\right|$ 的导数



已知 $f(x)$ 可导, $y=f\left(e^{x^2}\right)$ ,求 $d y$



设 $y$ 是由方程 $y^3(x+y)=x^3$ 所确定的隐函数,计算 $\int \frac{1}{y^2} d x$



设 $\Omega$ 是由锥面 $z=\sqrt{x^2+y^2}$ 与平面 $z=1$ 围成的锥体, 若其体密度为 $\rho=1$, 则 $\Omega$ 对 $z$ 轴的转动惯量 $I_z=$



曲线 $y=\sqrt{\frac{x^3}{2+x}} \cos (2 \arctan x)$ 的斜渐近线方程为



设某商品的需求函数 $Q=Q(p)$, 需求弹性 $\eta=\frac{p}{60-p}(\eta>0), p$ 为单价 (万元), 则当 $p=10$万元时, 商品的总收益对白身价格的弹性 $\eta_1$ 为



确定常数 $b$, 使得直线 $y=9 x+b$ 为曲线 $y=x^3-3 x$ 的切线;



求函数 $f(x)=(x+1) \ln (x+1)$ 的单调区间和极值;



三、解答题 ( 共 14 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求由曲线 $ y=2 x, x y=2, y=\frac{x^2}{4} $ 所围成平面图形的面积.



 

求 $y=x^{\sin x}(x>0)$ 的导数 $y^{\prime}(x)$.



 

设 $y=y(x)$ 是由方程 $\mathrm{e}^{-y}-y+\int_0^x\left(\mathrm{e}^{-t^2}+1\right) \mathrm{d} t=1$ 所确定的隐函数.
(1) 证明 $y(x)$ 是单调增加函数;
(2)当 $x \rightarrow+\infty$ 时, 曲线 $y^{\prime}(x)$ 是否有水平渐近线, 若有, 求出其渐近线方程, 若没有, 说明理由.



 

设 $f(x)$ 在 $x=0$ 存在二阶导数,且
$$
\lim _{x \rightarrow 0}\left(\frac{\sin x}{x^3}+\frac{f(x)}{x^2}\right)=0 .
$$
求 $f^{\prime}(0), f^{\prime \prime}(0)$.



 

应用三阶泰勒公式求 $\sin 18^{\circ}$ 的近似值, 并估计误差.



 

设 $f(x)=\frac{x^5}{(1-x)(1+x)}$, 求 $f^{(9)}(0)$.



 

若曲线 $y=x^2+a x+b$ 与 $2 y=x y^3-1$ 在点 $(1,-1)$ 处相切, 求常数 $a, b$.



 

设 $f(x)$ 为连续函数, 且满足 $f(x)=x^2-x \cdot f(2)+2 \int_0^1 f(x) \mathrm{d} x$ ,求 $f(x)$.



 

求函数 $y(x)=\frac{x \int_0^{\frac{1}{x}}\left(\mathrm{e}^t+\tan t\right)^{\frac{1}{(1+t)} \mathrm{d} t}}{\sin \frac{1}{x}}$ 的斜渐近线方程.



 

$p^2>4 q, q \neq 0, y=\frac{1}{x^2+p x+q} \text {, 求 } y^{(n)}$



 

设函数 $f(x)=x \ln \left(1-x^2\right)$ ,求 $f^{(11)}(0)$



 

设 $f(x)=\tan x \cdot \tan (2 x) \cdot \ldots \cdot \tan (2022 x)$, 求 $f^{(2024)}(0)$.



 

要制作一个体积为 $V$ 的圆柱形无盖铁桶, 问如何确定其底面半径和高才能用料最省?



 

设函数 $f$ 在 $(-\infty,+\infty)$ 上有连续二阶导数, 且满足方程
$$
x f^{\prime}(x)=f(x)+140 x^6 \text { 。 }
$$
(1) 求 $f(x)$ 的表达式;
(2) 问曲线 $y=f(x)$ 是否有拐点? 请说明理由。
(3) 是否存在函数 $f$, 它在开区间 $(0,1)$ 上大于零, 并满足上面的方程, 且曲线 $y=f(x)(x \in[0,1])$ 与直线 $x=1$ 和 $y=0$ 所围的图形 $D$ 的面积为 2 ? 请说明理由。



 

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与