考研数学
重点科目
其它科目

科数网

0726-03

数学

单选题 (共 4 题 ),每题只有一个选项正确
设 $f(x, y)$ 连续,且 $f(x, y)=x y+\iint_D f(u, v) \mathrm{d} u \mathrm{~d} v$ ,其中 $D$ 是由 $y=0$, $y=x^2, x=1$ 所围成的区域,则 $f(x, y)$ 等于
$\text{A.}$ $x y$ $\text{B.}$ $2 x y$ $\text{C.}$ $x y+\frac{1}{8}$ $\text{D.}$ $x y+1$

设 $S: x^2+y^2+z^2=a^2(z \geq 0), S_1$ 为 $S$ 在第一卦限中的部分,则有
$\text{A.}$ $\iint_S x \mathrm{~d} S=4 \iint_{S_1} x \mathrm{~d} S$ $\text{B.}$ $\iint_S y \mathrm{~d} S=4 \iint_{S_1} y \mathrm{~d} S$ $\text{C.}$ $\iint_S z \mathrm{~d} S=4 \iint_{S_1} z \mathrm{~d} S$ $\text{D.}$ $\iint_S x y z \mathrm{~d} S=4 \iint_{S_1} x y z \mathrm{~d} S$

设函数 $f(u)$ 连续,区域 $D=\left\{(x, y) \mid x^2+y^2 \leq 2 y\right\}$, 则 $\iint_D f(x y) \mathrm{d} x \mathrm{~d} y$ 等于
$\text{A.}$ $\int_{-1}^1 \mathrm{~d} x \int_{-\sqrt{1-x^2}}^{\sqrt{1-x^2}} f(x y) \mathrm{d} y$ $\text{B.}$ $2 \int_0^2 \mathrm{~d} y \int_0^{\sqrt{2 y-y^2}} f(x y) \mathrm{d} x$ $\text{C.}$ $\int_0^\pi \mathrm{d} \theta \int_0^{2 \sin \theta} f\left(r^2 \sin \theta \cos \theta\right) \mathrm{d} r$ $\text{D.}$ $\int_0^\pi \mathrm{d} \theta \int_0^{2 \sin \theta} f\left(r^2 \sin \theta \cos \theta\right) r \mathrm{~d} r$

函数 $f(x, y)=\arctan \frac{x}{y}$ 在点 $(0,1)$ 处的梯度等于
$\text{A.}$ i $\text{B.}$ -i $\text{C.}$ j $\text{D.}$ -j

填空题 (共 2 题 ),请把答案直接填写在答题纸上
向量场 $\boldsymbol{u}(x, y, z)=x y^{2} \boldsymbol{i}+y \mathrm{e}^{z} \boldsymbol{j}+x \ln \left(1+z^{2}\right) \boldsymbol{k}$ 在点 $P(1,1,0)$ 处的散度 $\operatorname{div} \boldsymbol{u}=$

函数 $u=\ln \left(x^{2}+y^{2}+z^{2}\right)$ 在点 $M(1,2,-2)$ 处的梯度 $\left.\operatorname{grad} u\right|_{M}=$

试卷二维码

分享此二维码到群,让更多朋友参与