科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

1试卷具体名称

数学

一、单选题 (共 9 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设二维随机变量 $(X, Y)$ 服从正态分布 $N\left(0,0 ; 1,1 ; \frac{1}{2}\right)$, 则
$\text{A.}$ $\frac{(X+Y)^2}{3(X-Y)^2} \sim F(1.1)$. $\text{B.}$ $X^2+Y^2 \sim \chi^2(2)$. $\text{C.}$ $\frac{X}{|Y|} \sim t(1)$. $\text{D.}$ $\frac{(X+Y)^2}{2} \sim \chi^2(1)$.


设总体 $X$ 服从正态分布 $N\left(\mu, \sigma^2\right)(\sigma>0), X_1, X_2, \cdots, X_{2 n}(n \geq 2)$ 为来自该总体的简单随机样本, 其样本均值为 $\bar{X}=\frac{1}{2 n} \sum_{i=1}^{2 n} X_i$. 记统计量
$$
Y_1=\sum_{i=1}^{2 n}\left(X_i-\bar{X}\right)^2, Y_2=\sum_{i=1}^n\left(X_i-X_{n+i}\right)^2, Y_3=\sum_{i=1}^n\left(X_i+X_{n+i}-2 \bar{X}\right)^2 \text {, }
$$

则这 3 个统计量的数学期望 $E\left(Y_1\right), E\left(Y_2\right), E\left(Y_3\right)$ 的大小关系为
$\text{A.}$ $E\left(Y_1\right)>E\left(Y_2\right)>E\left(Y_3\right)$ $\text{B.}$ $E\left(Y_1\right)>E\left(Y_3\right)>E\left(Y_2\right)$ $\text{C.}$ $E\left(Y_3\right)>E\left(Y_1\right)>E\left(Y_2\right)$ $\text{D.}$ $E\left(Y_2\right)>E\left(Y_1\right)>E\left(Y_3\right)$


设总体 $X \sim N(\mu, 1), Y \sim N(\mu, 1)$, 且 $X, Y$ 相互独立, $X_1, X_2, \cdots, X_n$ 与 $Y_1, Y_2, \cdots, Y_n$ 分别来自总体 $X, Y$ 的简单随机样本, 设 $X=\frac{1}{n} \sum_{i=1}^n X_i, Y=\frac{1}{n} \sum_{i=1}^n Y_i, S_X^2=\frac{1}{n-1} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2$, $S_Y^2=\frac{1}{n-1} \sum_{i=1}^n\left(Y_i-\bar{Y}\right)^2$, 则 $\frac{\sqrt{n}(\bar{X}-\bar{Y})}{\sqrt{S_X^2+S_Y^2}}$ 服从
$\text{A.}$ $t(n-1)$ $\text{B.}$ $t(n)$ $\text{C.}$ $t(2 n)$ $\text{D.}$ $t(2 n-2)$


设总体 $X$ 与 $Y$ 相互独立且都服从正态分布 $N\left(\mu, \sigma^2\right), \bar{X}, \bar{Y}$ 是分别来自总体 $X, Y$, 容量都为 $n$的样本的样本均值, 则当 $n$ 固定时, 概率 $P\{|\bar{X}-\bar{Y}|>\sigma\}$ 的值随 $\sigma$ 的增大而
$\text{A.}$ 单调增大 $\text{B.}$ 单调减小 $\text{C.}$ 保持不变 $\text{D.}$ 增减不定


设总体 $X \sim N\left(\mu_1, 4\right), Y \sim N\left(\mu_2, 5\right), X$ 与 $Y$ 相互独立, $X_1, \cdots, X_8$ 和 $Y_1, \cdots, Y_{10}$ 是分别来自总体 $X$ 和 $Y$ 的两个样本, $S_X^2$ 与 $S_Y^2$ 分别为两个样本的样本方差, 则
$\text{A.}$ $\frac{2 S_X^2}{5 S_Y^2} \sim F(7,9)$ $\text{B.}$ $\frac{5 S_X^2}{2 S_Y^2} \sim F(7,9)$ $\text{C.}$ $\frac{4 S_X^2}{5 S_Y^2} \sim F(7,9)$ $\text{D.}$ $\frac{5 S_X^2}{4 S_Y^2} \sim F(7,9)$


设 $X_1, X_2, X_3, X_4$ 为来自总体 $N\left(0, \frac{1}{2}\right)$ 的简单随机样本, 则统计量 $Y=\frac{X_1-X_2}{\sqrt{X_3^2+X_4^2}}$ 服从
$\text{A.}$ $N(0,1)$ $\text{B.}$ $\chi^2(2)$ $\text{C.}$ $t(2)$ $\text{D.}$ $F(2,2)$


设总体 $X$ 的概率分布为 $P\{X=1\}=\frac{1-\theta}{2}, P\{X=2\}=P\{X=3\}=\frac{1+\theta}{4}$. 利用来自总体 $X$ 的样本值 $1,3,2,2,1,3,1,2$, 可得 $\theta$ 的最大似然估计值为
$\text{A.}$ $\frac{1}{4}$ $\text{B.}$ $\frac{3}{8}$ $\text{C.}$ $\frac{1}{2}$ $\text{D.}$ $\frac{5}{8}$


一批零件的长度服从正态分布 $N\left(\mu, \sigma^2\right)$, 其中 $\mu, \sigma^2$ 均未知. 现从中随机抽取 16 个零件, 测得样本均值 $\bar{x}=20 \mathrm{~cm}$, 样本标准差 $s=1 \mathrm{~cm}$, 则 $\mu$ 的置信水平为 0.90 的置信区间为
$\text{A.}$ $\left(20-\frac{1}{4} t_{0.05}(16), 20+\frac{1}{4} t_{0.05}(16)\right)$ $\text{B.}$ $\left(20-\frac{1}{4} t_{0.1}(16), 20+\frac{1}{4} t_{0.1}(16)\right)$ $\text{C.}$ $\left(20-\frac{1}{4} t_{0.05}(15), 20+\frac{1}{4} t_{0.05}(15)\right)$ $\text{D.}$ $\left(20-\frac{1}{4} t_{0.1}(15), 20+\frac{1}{4} t_{0.1}(15)\right)$


一) 在假设检验中, 显著性水平 $\alpha$ 的意义是
$\text{A.}$ 原假设 $H_0$ 成立, 经检验被拒绝的概率 $\text{B.}$ 原假设 $H_0$ 成立, 经检验被接受的概率 $\text{C.}$ 原假设 $H_0$ 不成立, 经检验被拒绝的概率 $\text{D.}$ 原假设 $H_0$ 不成立, 经检验被接受的概率


二、填空题 (共 4 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设 $A, B$ 是两个事件, 且 $P(A)=0.6, P(B)=0.7$. 问:
(1) 在什么条件下 $P(A B)$ 取到最大值, 最大值是多少?
(2) 在什么条件下 $P(A B)$ 取到最小值, 最小值是多少?



为了提高抗菌素生产的产量和质量, 需要对生产菌种进行诱变处理, 然后从一大批经过处理的变异菌株中抽取一小部分来培养、测定, 从中找出优良的菌株. 如果某菌种的优良变异率为 0.03 , 试问从一大批经诱变处理的菌株中, 采取多少只来培养、测定, 才能以 $95 \%$ 的把握从中至少可以选到一只优良菌株?



将编号为 $1,2,3$ 的三个球随机放入编号为 $1,2,3$ 的三个盒子中,每盒仅放一个球,令
$$
X_i=\left\{\begin{array}{ll}
1, & \text { 第 } i \text { 号球放第 } i \text { 号盒中, } \\
0, & \text { 其他 }
\end{array}(i=1,2),\right.
$$

则 $\rho_{X_1 X_2}=$



设总体 $X$ 的概率密度为 $f(x)=\frac{1}{2} \mathrm{e}^{-x \mid}(-\infty < x < +\infty), X_1, X_2, \cdots, X_n$ 为来自总体 $X$ 的简单随机样本, 其样本方差为 $S^2$, 则 $E\left(S^2\right)=$



三、解答题 ( 共 7 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设某种电子器件的寿命 (以 $\mathrm{h}$ 计) $T$ 服从双参数的指数分布, 其概率密度为
$$
f(t)= \begin{cases}\frac{1}{\theta} \mathrm{e}^{-(t-c) / \theta}, & t \geqslant c, \\ 0, & \text { 其他, }\end{cases}
$$
其中 $c, \theta(c, \theta>0)$ 为未知参数. 自一批这种器件中随机地取 $n$ 件进行寿命试验.设它们的失效时间依次为 $x_1 \leqslant x_2 \leqslant \cdots \leqslant x_n$.
(1) 求 $\theta$ 与 $c$ 的最大似然估计值.
(2) 求 $\theta$ 与 $c$ 的矩估计量.



 

设二维随机变量 $(X, Y)$ 在区域 $D=\{(x, y)|| x+y|\leqslant 1| x-y \mid, \leqslant 1\}$ 上服从均匀分布, 求:
$(I)(X, Y)$ 的边缘概率密度 $f_X(x), f_Y(y)$;
(II) $Z=X+Y$ 的概率密度 $f_Z(z)$;
(III) $P\left\{\left.|Y| \leqslant \frac{1}{2}|| X \right\rvert\, \leqslant \frac{1}{2}\right\}$.



 

设随机变量 $X$ 服从参数为 $\lambda(\lambda>0)$ 的指数分布.
(I) 求 $Y=[X]+1$ 的概率分布, 并求 $E Y$;
(II) 求 $Z=X-[X]$ 的概率密度, 并求 $E Z$.



 

设总体 $(X, Y)$ 的分布函数为
$$
F(x, y)= \begin{cases}0, & x < 0 \text { 或 } y < \theta, \\ p\left[1-\mathrm{e}^{-(y-\theta)}\right], & 0 \leqslant x < 1, y \geqslant \theta, \\ 1-\mathrm{e}^{-(y-\theta)}, & x \geqslant 1, y \geqslant \theta .\end{cases}
$$

其中 $p, \theta$ 为末知参数, 且 $0 < p < 1$.
(I) 求 $X$ 的概率分布和 $Y$ 的概率密度, 并判别 $X$ 和 $Y$ 的独立性;
(II) 求 $Z=X+Y$ 的概率密度 $f_Z(z)$.



 

假设 $X_1, X_2, \cdots, X_n$ 是来自总体 $X$ 的简单随机样本, 已知 $E\left(X^k\right)=\alpha_k(k=1,2,3,4)$.证明: 当 $n$ 充分大时, 随机变量 $Z_n=\frac{1}{n} \sum_{i=1}^n X_i^2$ 近似服从正态分布, 并指出其分布参数.



 

已知总体 $X$ 的概率密度为
$$
f(x)= \begin{cases}(1+\theta) x^\theta, & 0 < x < 1 , \\ 0, & \text { 其他, }\end{cases}
$$

其中 $\theta>-1$ 是未知参数, 设 $X_1, X_2, \cdots, X_n$ 为来自总体 $X$ 的简单随机样本, 求 $\theta$ 的矩估计量和最大似然估计量.



 

设总体 $X$ 的概率密度为
$$
f(x)= \begin{cases}\frac{6 x}{\theta^3}(\theta-x), & 0 < x < \theta, \\ 0, & \text { 其他, }\end{cases}
$$
$X_1, X_2, \cdots, X_n$ 是取自总体 $X$ 的简单随机样本. 求:
(1) $\theta$ 的矩估计量 $\hat{\theta}$;
(2) $\hat{\theta}$ 的方差 $D \hat{\theta}$.



 

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与