科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

2025考研数学二试题

一、单选题 (共 10 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $f(x)=\ln \left(1+x^{\frac{2}{3}}\right)-x^{\frac{2}{3}}$, 则
$\text{A.}$ $f^{\prime}(0)$ 不存在, $f^{\prime \prime}(0)$ 不存在. $\text{B.}$ $f^{\prime}(0)$ 存在, $f^{\prime \prime}(0)$ 不存在. $\text{C.}$ $f^{\prime}(0)$ 存在, $f^{\prime \prime}(0)$ 存在. $\text{D.}$ 无法确定 $f^{\prime \prime}(0)$ 是否存在.


设函数 $f(x)$ 在闭区间 $[0,1]$ 上连续, $\int_0^1 f(x) \mathrm{d} x=4$, 则 $\int_0^1\left[f(x) \int_x^1 f(t) \mathrm{d} t\right] \mathrm{d} x=$
$\text{A.}$ 2 $\text{B.}$ 4 $\text{C.}$ 8 $\text{D.}$ 16


下列反常积分中, 收敛的是
$\text{A.}$ $\int_0^{+\infty} \frac{1}{\sqrt{x^2+x}} \mathrm{~d} x$. $\text{B.}$ $\int_0^{+\infty} \frac{1}{\sqrt{x^3(x+1)^3}} \mathrm{~d} x$. $\text{C.}$ $\int_0^{+\infty} \frac{1}{\sqrt[3]{x^3+x^2}} \mathrm{~d} x$. $\text{D.}$ $\int_0^{+\infty} \frac{1}{\sqrt{x^3+x}} \mathrm{~d} x$.


若函数 $z=f(x, y)$ 在点 $(1,1)$ 处连续, 且 $\lim _{\substack{x \rightarrow 1 \\ y=1}} \frac{f(x, y)-2 x+4 y-1}{\sqrt{x^2+y^2-2 x-2 y+3}-1}=2$, 则
$\text{A.}$ $f(x, y)$ 在点 $(1,1)$ 处不存在偏导数. $\text{B.}$ $f(x, y)$ 在点 $(1,1)$ 处存在偏导数但不可微. $\text{C.}$ $f(x, y)$ 在点 $(1,1)$ 处可微, 且 $\left.\mathrm{d} z\right|_{(1.1)}=2 \mathrm{~d} x-4 \mathrm{~d} y$. $\text{D.}$ $f(x, y)$ 在点 $(1,1)$ 处可微, 且 $\left.\mathrm{d} z\right|_{(1.1)}=-2 \mathrm{~d} x+4 \mathrm{~d} y$.


已知平面区域 $D_1=\left\{(x, y) \left\lvert\, 0 \leqslant y \leqslant x \leqslant \frac{\pi}{2}\right.\right\}, D_2=\left\{(x, y) \left\lvert\, 0 \leqslant x \leqslant y \leqslant \frac{\pi}{2}\right.\right\}$, $D_3=\left\{(x, y) \left\lvert\, \frac{\pi}{2} \leqslant x \leqslant y \leqslant \pi\right.\right\}$, 记 $I_1=\iint_{D_1} \mathrm{e}^{-x^2} \sin y \mathrm{~d} x \mathrm{~d} y, I_2=\iint_{D_2} \mathrm{e}^{-x^2} \sin y \mathrm{~d} x \mathrm{~d} y$, $I_3=\iint_{D_3} \mathrm{e}^{-x^2} \sin y \mathrm{~d} x \mathrm{~d} y$, 则
$\text{A.}$ $I_3 < I_1 < I_2$. $\text{B.}$ $I_3 < I_2 < I_1$. $\text{C.}$ $I_1 < I_3 < I_2$. $\text{D.}$ $I_1 < I_2 < I_3$.


如果 $[1,0,1]^T,[1,2,3]^T$ 是非齐次线性方程组的两个解, 则下面哪个也 是方程组的解?
$\text{A.}$ $[2,2,4]^T$ $\text{B.}$ $[0,2,2]^T$ $\text{C.}$ $[1,-2,-1]^T$ $\text{D.}$ $[2,0,2]^T$


设 $\boldsymbol{\alpha}$ 为 3 维实列向量, 且 $\boldsymbol{\alpha}^{\mathrm{T}} \boldsymbol{\alpha}=1, \boldsymbol{B}=\boldsymbol{\alpha} \boldsymbol{\alpha}^{\mathrm{T}}, \boldsymbol{A}$ 为 3 阶不可逆矩阵, 且 $\boldsymbol{A}+\boldsymbol{B}-\boldsymbol{A} \boldsymbol{B}=\boldsymbol{E}$, 则 $|\boldsymbol{A}+\boldsymbol{E}|=$
$\text{A.}$ 0 $\text{B.}$ 2 $\text{C.}$ 4 $\text{D.}$ 8


若矩阵 $\boldsymbol{A}$ 可经初等行变换化为 $\boldsymbol{B}$, 则
$\text{A.}$ 方程组 $\boldsymbol{A x}=\mathbf{0}$ 与 $\boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{x}=\mathbf{0}$ 同解. $\text{B.}$ 方程组 $B x=0$ 与 $A A^{\mathrm{r}} x=0$ 同解. $\text{C.}$ 方程组 $A^{\mathrm{T}} A x=0$ 与 $\boldsymbol{B}^{\mathrm{T}} \boldsymbol{B x}=\mathbf{0}$ 同解. $\text{D.}$ 方程组 $\boldsymbol{A} \boldsymbol{A}^{\mathrm{T}} \boldsymbol{x}=\mathbf{0}$ 与 $\boldsymbol{B} \boldsymbol{B}^{\mathrm{T}} \boldsymbol{x}=\mathbf{0}$ 同解.


设 $\boldsymbol{A}$ 为 3 阶非零矩阵, 下列命题中, 是齐次线性方程组 $\boldsymbol{A} \boldsymbol{x}=\mathbf{0}$ 有非零解的充分条件的个数为
(1) 非齐次线性方程组 $\boldsymbol{A}^* \boldsymbol{x}=\boldsymbol{b}$ 有唯一解.
(2) 非齐次线性方程组 $\boldsymbol{A}^* \boldsymbol{x}=\boldsymbol{b}$ 有无穷多解.
(3) 非齐次线性方程组 $\boldsymbol{A A} \boldsymbol{A}^{\top} \boldsymbol{x}=\boldsymbol{b}$ 有唯一解.
(4) 非齐次线性方程组 $\boldsymbol{A A ^ { \top } \boldsymbol { x }}=\boldsymbol{b}$ 有无穷多解.
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4


二、填空题 (共 6 题, 每小题 5 分,共 30 分)
由曲线 $x y=3, x+y=4$ 围成的平面区域绕 $x$ 轴旋转一周所成旋转体体积为



二元函数 $f(x, y)=3 x y-x^3-y^3+3$ 的所有极值的和等于



设 $\lim _{x \rightarrow 0} \frac{\ln \left(1-2 x^3\right)+x f(x)}{x^6}=3$, 则 $\lim _{x \rightarrow 0} \frac{f(x)-2 x^2}{x^5}=$



设 $y=y(x)$ 由 $\left\{\begin{array}{l}x=3 t^2+2 t+3, \\ y=\mathrm{e}^y \sin t+1\end{array}\right.$ 所确定, 则曲线 $y=y(x)$ 在 $t=0$ 对应的点 处的曲率 $k=$



已知三阶矩阵 $\boldsymbol{A}$ 的特征值为 $0,1,2$, 设矩阵 $\boldsymbol{B}=\boldsymbol{A}^2-2 \boldsymbol{A}$, 则 $\mathrm{r}(\boldsymbol{B})=$



设 $\boldsymbol{A}=\left(\begin{array}{cccc}1 & 3 & 0 & 0 \\ 0 & 4 & 6 & 0 \\ 0 & 0 & 7 & 9 \\ 0 & 0 & 0 & 10\end{array}\right), \boldsymbol{B}=(2 \boldsymbol{A}+\boldsymbol{E})(\boldsymbol{A}+2 \boldsymbol{E})^{-1}$, 则 $|\boldsymbol{B}-2 \boldsymbol{E}|$ 中所有元素的代数余子式之和为



三、解答题 ( 共 6 题,满分 70 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
设函数 $f(x)$ 可微, 曲线 $y=f(x)$ 在点 $(1, f(1))$ 处的切线方程为 $y=x-1$, 求极限
$$
\lim _{x \rightarrow 0} \frac{\int_0^x \mathrm{e}^t f\left(1+\mathrm{e}^x-\mathrm{e}^t\right) \mathrm{d} t}{1-\sqrt{1+3 x^2}}
$$



 

设 $y=y(x)$ 满足 $x^2 y^{\prime}+y=x^2 \mathrm{e}^{\frac{1}{x}}(x \neq 0)$, 且 $y(1)=3 \mathrm{e}$.
(I) 求 $y=y(x)$ 的全部渐近线方程;
(II) 讨论曲线 $y=y(x)$ 与 $y=k(k>0)$ 不同交点的个数.



 

计算二重积分 $\iint_D \frac{(x-y)^2+2}{\left(x^2+y^2\right)^{\frac{3}{2}}} \mathrm{~d} x \mathrm{~d} y$, 其中 $D=\left\{(x, y) \mid x^2+y^2 \geqslant 2, x \leqslant 1\right\}$.



 

在除原点之外的上半空间 $z \geqslant 0$ 上, 函数 $u(x, y, z)$ 有二阶连续偏导数, 满足
$$
u_x^{\prime}=2 x+y+z+x f(r), u_y^{\prime}=x+y f(r), u_z^{\prime}=x+z+z f(r),
$$

其中 $r=\sqrt{x^2+y^2+z^2}, u_{x x}^{\prime \prime}+u_{y y}^{\prime \prime}+u_{z z}^{\prime \prime}=0, f(1)=1$.
(1) 求 $f(r)$ 的表达式;
(2) 求 $f(r)$ 在约束条件 $x^2+\frac{y^2}{2}-z^2=1$ 下的最大值与最小值.



 

已知函数 $f(x)$ 在 $[a, b]$ 上有一阶连续导数, 且在开区间内一点 $c \in(a, b)(c>0)$ 处与直线 $y=k$ 相切. 证明: $\exists \eta \in(a, b)$ 且 $\eta \neq c$, 使得 $f^{\prime}(\eta)+2 \eta[f(\eta)-f(b)]=0$.



 

设矩阵 $\boldsymbol{A}=\left(\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2, \boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3, \boldsymbol{\alpha}_1-\boldsymbol{\alpha}_2+k \boldsymbol{\alpha}_3\right)$, 其中 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3, \boldsymbol{\alpha}_4$ 均为 4 维列向量, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \boldsymbol{\alpha}_3$ 线性无关, 且 $\boldsymbol{\alpha}_4=\boldsymbol{\alpha}_1+2 \boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3$, 若线性方程组 $\boldsymbol{A x}=\boldsymbol{\alpha}_4$ 有无穷多个解.
(I) 求 $k$ 的值;
(II) 求方程组 $\boldsymbol{A x}=\boldsymbol{\alpha}_4$ 的通解.



 

试卷二维码

分享此二维码到群,让更多朋友参与