一、解答题 ( 共 3 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
问 $\lambda$ 为何值时, 线性方程组 $\left\{\begin{array}{l}\lambda x_1+x_2+x_3=\lambda-2 \\ x_1+\lambda x_2+x_3=-1 \\ x_1+x_2+\lambda x_3=-1\end{array}\right.$ 有唯一解、无解、和有 无穷多解? 当方程有无穷多解时, 求其通解
证明题:
(1)设 $A$ 为 $n$ 阶对称方阵, $P$ 为 $n$ 阶可逆矩阵。证明: $A$ 与 $\left(P^{-1} A P\right)^T$ 具有相同的特征值。
(2)设 $n$ 维列向量 $x=\left(\frac{1}{\sqrt{2}}, 0, \cdots, 0, \frac{1}{\sqrt{2}}\right)^T, H=E-2 \boldsymbol{x} \boldsymbol{x}^T$, 其中 $E$ 为 $n$ 阶单位阵,
证明:
①$H^2=E$
② $H^T=H$
设二次型 $f\left(x_1, x_2, x_3\right)=2 x_1^2+3 x_2^2+3 x_3^2+4 x_2 x_3$, 利用正交变换法, 把二次型 $f$ 化为标准形, 并写出正交阵。