考研数学
重点科目
其它科目

科数网

练习

数学

单选题 (共 4 题 ),每题只有一个选项正确
设 $f(x)$ 满足 $\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2 x}-1}{e^{x^2}-1}=1$, 则
$\text{A.}$ $f(0)=0$ $\text{B.}$ $\lim _{x \rightarrow 0} f(x)=0$ $\text{C.}$ $f^{\prime}(0)=1$ $\text{D.}$ $\lim _{x \rightarrow 0} f^{\prime}(x)=1$

已知 $f(x)=\max \left\{1, x^2\right\}$, 则 $\int f(x) d x= $
$\text{A.}$ $\left\{\begin{array}{l}\frac{x^3}{3}-\frac{2}{3}+C, \quad x < -1 \\ x+C, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+\frac{2}{3}+C, \quad x>1\end{array}\right.$ $\text{B.}$ $\left\{\begin{array}{c}\frac{x^3}{3}+C, \quad x < -1 \\ x+C, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+C, \quad x>1\end{array}\right.$ $\text{C.}$ $\left\{\begin{array}{c}\frac{x^3}{3}+C_1, \quad x < -1 \\ x+C_2, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+C_3, \quad x>1\end{array}\right.$ $\text{D.}$ $\left\{\begin{array}{l}\frac{x^3}{3}-\frac{4}{3}+C, \quad x < -1 \\ x+C, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+\frac{2}{3}+C, \quad x>1\end{array}\right.$

设 $f(x)$ 是严格单调的连续奇函数, $g(x)$ 是偶函数, 已知数列 $\left\{x_n\right\}$, 则
$\text{A.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在 $\text{B.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在 $\text{C.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} g\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在 $\text{D.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} f\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在

已知曲面 $z=4-x^2-y^2$ 上点 $P$ 处的切平面平行于平面 $2 x+2 y+z-1=0$, 则点 $P$ 的坐标是
$\text{A.}$ $(1,-1,2)$ $\text{B.}$ $(-1,1,2)$ $\text{C.}$ $(1,1,2)$ $\text{D.}$ $(-1,-1,2)$

填空题 (共 2 题 ),请把答案直接填写在答题纸上
设曲线 $\Gamma$ 的极坐标方程为 $r=\sin 2 \theta\left(0 \leq \theta \leq \frac{\pi}{2}\right)$, 则 $\Gamma$ 围成有界区域的面积为

设函数 $y=f(x)$ 二阶可导,且满足 $y^{\prime}=(5-y) y^a$, 其中常数 $a>0$, 点 $\left(x_0, 3\right)$ 为曲线 $y=f(x)$ 的拐点, 则 $a=$

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与