一、单选题 (共 4 题,每小题 5 分,共 50 分,每题只有一个选项正确)
设 $f(x)$ 满足 $\lim _{x \rightarrow 0} \frac{\sqrt{1+f(x) \sin 2 x}-1}{e^{x^2}-1}=1$, 则
$\text{A.}$ $f(0)=0$
$\text{B.}$ $\lim _{x \rightarrow 0} f(x)=0$
$\text{C.}$ $f^{\prime}(0)=1$
$\text{D.}$ $\lim _{x \rightarrow 0} f^{\prime}(x)=1$
已知 $f(x)=\max \left\{1, x^2\right\}$, 则 $\int f(x) d x= $
$\text{A.}$ $\left\{\begin{array}{l}\frac{x^3}{3}-\frac{2}{3}+C, \quad x < -1 \\ x+C, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+\frac{2}{3}+C, \quad x>1\end{array}\right.$
$\text{B.}$ $\left\{\begin{array}{c}\frac{x^3}{3}+C, \quad x < -1 \\ x+C, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+C, \quad x>1\end{array}\right.$
$\text{C.}$ $\left\{\begin{array}{c}\frac{x^3}{3}+C_1, \quad x < -1 \\ x+C_2, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+C_3, \quad x>1\end{array}\right.$
$\text{D.}$ $\left\{\begin{array}{l}\frac{x^3}{3}-\frac{4}{3}+C, \quad x < -1 \\ x+C, \quad-1 \leq x \leq 1 \\ \frac{x^3}{3}+\frac{2}{3}+C, \quad x>1\end{array}\right.$
设 $f(x)$ 是严格单调的连续奇函数, $g(x)$ 是偶函数, 已知数列 $\left\{x_n\right\}$, 则
$\text{A.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在
$\text{B.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} x_n$ 存在
$\text{C.}$ 当 $\lim _{n \rightarrow \infty} f\left(g\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} g\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在
$\text{D.}$ 当 $\lim _{n \rightarrow \infty} g\left(f\left(x_n\right)\right)$ 存在时, $\lim _{n \rightarrow \infty} f\left(x_n\right)$ 存在, 但 $\lim _{n \rightarrow \infty} x_n$ 不一定存在
已知曲面 $z=4-x^2-y^2$ 上点 $P$ 处的切平面平行于平面 $2 x+2 y+z-1=0$, 则点 $P$ 的坐标是
$\text{A.}$ $(1,-1,2)$
$\text{B.}$ $(-1,1,2)$
$\text{C.}$ $(1,1,2)$
$\text{D.}$ $(-1,-1,2)$
二、填空题 (共 4 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
设曲线 $\Gamma$ 的极坐标方程为 $r=\sin 2 \theta\left(0 \leq \theta \leq \frac{\pi}{2}\right)$, 则 $\Gamma$ 围成有界区域的面积为
设函数 $y=f(x)$ 二阶可导,且满足 $y^{\prime}=(5-y) y^a$, 其中常数 $a>0$, 点 $\left(x_0, 3\right)$ 为曲线 $y=f(x)$ 的拐点, 则 $a=$
微分方程 $y^{\prime \prime}+4 y^{\prime}+4 y=\mathrm{e}^{-2 x}$ 的通解为
已知 $f(x, y)=x y+x^2 y \iint_D x y f(x, y) \mathrm{d} x \mathrm{~d} y$, 其中 $D: y=x, y=0, x=1$ 所围成区域, 则
$$
\frac{\partial^2 f}{\partial x \partial y}=
$$
三、解答题 ( 共 4 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求极限 $\lim _{n \rightarrow \infty}\left(b^{\frac{1}{n}}-1\right) \sum_{i=0}^{n-1} b^{\frac{i}{n}} \sin b^{\frac{2 i+1}{2 n}}(b>1)$.
设 $y^2 \mathrm{~d} x+(2 x y+1) \mathrm{d} y$ 是函数 $f(x, y)$ 的全微分, 其中 $f(0,0)=0$, 求 $f(x, y)$, 并计算曲面积分 $I=\iint_{\Sigma} z f(x, y) \mathrm{d} S$, 其中 $\Sigma$ 是椎面 $z=\sqrt{x^2+y^2}$ 被柱面 $x^2+(y-1)^2=1$ 所截下的有限部分.
若 $f(x)$ 为 $[0,1]$ 上的单调增加的连续函数, 证明:
$$
\frac{\int_0^1 x f^3(x) d x}{\int_0^1 x f^2(x) d x} \geq \frac{\int_0^1 f^3(x) d x}{\int_0^1 f^2(x) d x} .
$$
(I) 求 $y=x \sin x$ 在 $[0, n \pi]$ ( $n$ 为正整数)上与 $x$ 轴所围的面积 $A_n$;
(II) 在(I)的基础上, 求幂级数 $\sum_{n=1}^{\infty} \frac{A_n}{2^n} x^n$ 的收敛域及和函数.