科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

线性代数期末考试

数学

一、填空题 (共 9 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
若向量组 $\alpha_1=(1,1,0), \alpha_2=(1,3,-1), \alpha_3=(5,3, t)$ 线性 相关,则 $t=$



设 $A$ 和 $B$ 是 3 阶方阵, $A$ 的 3 个特征值分别为 $-3,3,0$ , 若 $E+B=A B$ ,则行列式 $\left|B^{-1}+2 E\right|=$



$\alpha=[0,-1,2]^T, \beta=[0,-1,1]^T, A=\alpha \beta^T$, 则 $A^4=$



设 $\boldsymbol{A}$ 为 2 阶矩阵, $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2$ 是矩阵 $\boldsymbol{A}$ 分别属于特征值 0,2 的特征向量, 则方程组 $\boldsymbol{A x}=\boldsymbol{\alpha}_2$ 的通解为



设 4 阶方阵 $A=\left(\alpha_1, \alpha_2, \alpha_3, \alpha_4\right)$, 且 $|A|=3$, 方阵 $B=\left(\alpha_2, 2 \alpha_4, \alpha_3-3 \alpha_1, \alpha_1\right)$,
则 $|B|=$



设 4 阶方阵 $A=\left(\begin{array}{cccc}5 & 2 & 0 & 0 \\ 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \\ 0 & 0 & 1 & 1\end{array}\right)$, 则 $A$ 的逆矩阵 $A^{-1}=$



已知三阶矩阵 $\boldsymbol{A}$ 的特征值为 $0,1,2$, 设矩阵 $\boldsymbol{B}=\boldsymbol{A}^2-2 \boldsymbol{A}$, 则 $\mathrm{r}(\boldsymbol{B})=$



设 $\boldsymbol{A}$ 为 3 阶正交矩阵, 且 $|\boldsymbol{A}| < 0$. 交换 $\boldsymbol{A}$ 的第二列和第三列, 再将第二列的 -1 倍加到第一列, 所得矩阵为 $\boldsymbol{B}$, 则 $\boldsymbol{A}^* \boldsymbol{B}=$



二、解答题 ( 共 10 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
计算行列式 $\left|\begin{array}{cccc}1 & 3 & 1 & 2 \\ 1 & 5 & 3 & -4 \\ 0 & 4 & 1 & -1 \\ -5 & 1 & 3 & -6\end{array}\right|$.



 

设矩阵 $A$ 和 $B$ 满足关系式 $A B=A+2 B$, 求矩阵 $B$ ,其中
$$
A=\left(\begin{array}{lll}
3 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 4
\end{array}\right),
$$



 

已知 ${A} {P}={P B}$, 其中 ${B}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1\end{array}\right), {P}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 2 & -1 & 0 \\ 2 & 1 & 1\end{array}\right)$, 求 ${A}$ 及 ${A}^{5}$.



 

已知 $\boldsymbol{\alpha}_{1}=(1,0,2,3), \boldsymbol{\alpha}_{2}=(1,1,3,5), \boldsymbol{\alpha}_{3}=(1,-1, a+2,1), \boldsymbol{\alpha}_{4}=(1,2,4, a+8)$ 及 $\boldsymbol{\beta}=$ $(1,1, b+3,5)$.
(1) $a, b$ 为何值时, $\boldsymbol{\beta}$ 不能表示成 $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}$ 的线性组合?
(2) $a, b$ 为何值时, $\boldsymbol{\beta}$ 有 $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}$ 的唯一的线性表示式? 并写出该表示式.



 

设向量组 $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$ 线性相关, 向量组 $\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}, \boldsymbol{\alpha}_{4}$ 线性无关, 问:
(1) $\boldsymbol{\alpha}_{1}$ 能否由 $\boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$ 线性表出? 证明你的结论.
(2) $\boldsymbol{\alpha}_{4}$ 能否由 $\boldsymbol{\alpha}_{1}, \boldsymbol{\alpha}_{2}, \boldsymbol{\alpha}_{3}$ 线性表出?证明你的结论.



 

设向量组 $a_1, a_2, a_3$ 线性无关, $b_1=3 a_1+a_2-a_3, b_2=4 a_1+a_2-a_3, b_3=a_2+a_3$, 讨论向量组 $b_1, b_2, b_3$ 的线性相关性。



 

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与