单选题 (共 2 题 ),每题只有一个选项正确
设 $I_1=\iint_D \sin \left|\frac{x-y}{2}\right| \mathrm{d} x \mathrm{~d} y, I_2=\iint_D \sin \left(\frac{x-y}{2}\right)^2 \mathrm{~d} x \mathrm{~d} y, I_3=\iint_D \sin \left(\frac{x-y}{2}\right)^3 \mathrm{~d} x \mathrm{~d} y$, 其中 $D=$ $\left\{(x, y) \mid(x-1)^2+(y-1)^2 \leqslant 2\right\}$, 则
$\text{A.}$ $I_1 < I_2 < I_3$
$\text{B.}$ $I_2 < I_3 < I_1$
$\text{C.}$ $I_3 < I_1 < I_2$
$\text{D.}$ $I_3 < I_2 < I_1$
函数 $f(x, y)$ 连续,交换二重积分 $\int_0^1 d y \int_y^{\sqrt{y}} f(x, y) d x$ 次序,该二重积分可表示为?
$\text{A.}$ $\int_0^1 d x \int_{x^3}^x f(x, y) d y$
$\text{B.}$ $\int_0^1 d x \int_{x^4}^x f(x, y) d y$
$\text{C.}$ $\int_0^1 d x \int_{x^2}^x f(x, y) d y$
$\text{D.}$ $\int_0^1 d x \int_{x^5}^x f(x, y) d y$
填空题 (共 1 题 ),请把答案直接填写在答题纸上
已知 $f(x, y)=x y+x^2 y \iint_D x y f(x, y) \mathrm{d} x \mathrm{~d} y$, 其中 $D: y=x, y=0, x=1$ 所围成区域, 则
$$
\frac{\partial^2 f}{\partial x \partial y}=
$$
解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
计算 $\iint_D y\left(1+x \mathrm{e}^{\frac{x^2+y^3}{2}}\right) \mathrm{d} x \mathrm{~d} y$, 其中平面区域 $D$ 由直线 $y=x, y=-1$ 及 $x=1$ 所围成.
计算 $\iint_D\left|y-x^2\right| \max \{x, y\} \mathrm{d} x \mathrm{~d} y$, 其中
$D=\{(x, y) \mid 0 \leqslant x \leqslant 1,0 \leqslant y \leqslant 1\} .$
设 $\Omega \subset \mathbf{R}^3$ 是有界闭区域, $I(\Omega)=\iiint_{\Omega}\left(x^2+\frac{y^2}{4}+\frac{z^2}{9}-1\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$ 取得最小值的积分域记为 $\Omega_1$.
(I) 求 $I\left(\Omega_1\right)$ 的值;
(II) 计算 $\iint_{\Sigma} \frac{x \mathrm{~d} y \mathrm{~d} z+y \mathrm{~d} z \mathrm{~d} x+z \mathrm{~d} x \mathrm{~d} y}{\left(x^2+2 y^2+3 z^2\right)^{\frac{3}{2}}}$, 其中 $\Sigma$ 是 $\Omega_1(z \geqslant 0)$ 的上侧边界.