考研数学
重点科目
其它科目

科数网

前6章摸底考试

数学

单选题 (共 6 题 ),每题只有一个选项正确
当 $x>0$ 时,曲线 $y=x \sin \frac{1}{x} $ (  )
$\text{A.}$ 有且仅有水平渐近线. $\text{B.}$ 有且仅有铅直渐近线. $\text{C.}$ 既有水平渐近线, 也有铅直渐近线. $\text{D.}$ 既无水平渐近线, 也无铅直渐近线.

曲线 $y=\frac{1+\mathrm{e}^{-x^{2}}}{1-\mathrm{e}^{-x^{2}}}(\quad)$
$\text{A.}$ 没有渐近线. $\text{B.}$ 仅有水平渐近线. $\text{C.}$ 仅有铅直渐近线. $\text{D.}$ 既有水平渐近线又有铅直渐近线.

当 $x \rightarrow 1$ 时, 函数 $\frac{x^{2}-1}{x-1} \mathrm{e}^{\frac{1}{x-1}}$ 的极限 ( )
$\text{A.}$ 等于 2 . $\text{B.}$ 等于 0 . $\text{C.}$ 为 $\infty$. $\text{D.}$ 不存在但不为 $\infty$.

设函数 $f(x)$ 在区间 $(-1,1)$ 内有定义, 且 $\lim _{x \rightarrow 0} f(x)=0$, 则 ( )
$\text{A.}$ 当 $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0, f(x)$ 在 $x=0$ 处可导. $\text{B.}$ 当 $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{x^2}}=0, f(x)$ 在 $x=0$ 处可导. $\text{C.}$ 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0$. $\text{D.}$ 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{x^2}}=0$.

设函数 $f(x)$ 的二阶导函数 $f^{\prime \prime}(x)$ 的图形如右图所示, 则曲线 $y=$ $f(x)$ 拐点个数为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

设 $f(x)$ 满足 $f^{\prime}(0)=0, f^{\prime}(x)+[f(x)]^3=x^2$, 则
$\text{A.}$ $f(0)$ 是 $f(x)$ 的极大值. $\text{B.}$ $f(0)$ 是 $f(x)$ 的极小值. $\text{C.}$ $(0, f(0))$ 是曲线 $y=f(x)$ 的拐点. $\text{D.}$ $f(0)$ 不是 $f(x)$ 的极值, $(0, f(0))$ 也不是曲线 $y=f(x)$ 的拐点.

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与