科数 题库 试卷 组卷 教材 学习 VIP充值
篮子 0

前6章摸底考试

数学

一、单选题 (共 10 题,每小题 5 分,共 50 分,每题只有一个选项正确)
当 $x>0$ 时,曲线 $y=x \sin \frac{1}{x} $ (  )
$\text{A.}$ 有且仅有水平渐近线. $\text{B.}$ 有且仅有铅直渐近线. $\text{C.}$ 既有水平渐近线, 也有铅直渐近线. $\text{D.}$ 既无水平渐近线, 也无铅直渐近线.


曲线 $y=\frac{1+\mathrm{e}^{-x^{2}}}{1-\mathrm{e}^{-x^{2}}}(\quad)$
$\text{A.}$ 没有渐近线. $\text{B.}$ 仅有水平渐近线. $\text{C.}$ 仅有铅直渐近线. $\text{D.}$ 既有水平渐近线又有铅直渐近线.


当 $x \rightarrow 1$ 时, 函数 $\frac{x^{2}-1}{x-1} \mathrm{e}^{\frac{1}{x-1}}$ 的极限 ( )
$\text{A.}$ 等于 2 . $\text{B.}$ 等于 0 . $\text{C.}$ 为 $\infty$. $\text{D.}$ 不存在但不为 $\infty$.


设函数 $f(x)$ 在区间 $(-1,1)$ 内有定义, 且 $\lim _{x \rightarrow 0} f(x)=0$, 则 ( )
$\text{A.}$ 当 $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0, f(x)$ 在 $x=0$ 处可导. $\text{B.}$ 当 $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{x^2}}=0, f(x)$ 在 $x=0$ 处可导. $\text{C.}$ 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{|x|}}=0$. $\text{D.}$ 当 $f(x)$ 在 $x=0$ 处可导时, $\lim _{x \rightarrow 0} \frac{f(x)}{\sqrt{x^2}}=0$.


设函数 $f(x)$ 的二阶导函数 $f^{\prime \prime}(x)$ 的图形如右图所示, 则曲线 $y=$ $f(x)$ 拐点个数为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4


设 $f(x)$ 满足 $f^{\prime}(0)=0, f^{\prime}(x)+[f(x)]^3=x^2$, 则
$\text{A.}$ $f(0)$ 是 $f(x)$ 的极大值. $\text{B.}$ $f(0)$ 是 $f(x)$ 的极小值. $\text{C.}$ $(0, f(0))$ 是曲线 $y=f(x)$ 的拐点. $\text{D.}$ $f(0)$ 不是 $f(x)$ 的极值, $(0, f(0))$ 也不是曲线 $y=f(x)$ 的拐点.


二、填空题 (共 5 题, 每小题 5 分,共 20 分, 请把答案直接填写在答题纸上)
当 $x=$ (  ) 时, 函数 $y=x 2^{x}$ 取得极小值.



已知 $f^{\prime}(3)=2$, 则 $\lim _{h \rightarrow 0} \frac{f(3-h)-f(3)}{2 h}=$



设函数 $f(x)$ 的定义域 $D=[0,4]$, 则函数 $f\left(x^2\right)$ 的定义域是



函数 $f(x)=\frac{\sqrt{1+2 x}-1}{x(x+1)(x-2)}$ 的无穷间断点为 ________ , $\lim _{x \rightarrow 0} f(x)=$



设 $f(x)=\frac{1}{x^2-3 x+2}$, 则 $f^{(n)}(0)=$



三、解答题 ( 共 5 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求极限 $\lim _{x \rightarrow 0}\left(\frac{1}{x^2}-\frac{1}{x \cdot \tan x}\right)$.



 

设 $x_1>0$, 数列 $\left\{x_n\right\}$ 满足 $x_{n+1}=\ln \left(\mathrm{e}^{x_n}-1\right)-\ln x_n$, 证明: $\lim _{n \rightarrow \infty} x_n$ 存在, 并求值.



 

设曲线 $x=y^2(y>0), x=2-y^2(y>0)$ 及 $y=0$ 围成一平面图形 D.
(1) 求平面图形 D 的面积;
(2) 求平面图形 D 绕 $y$ 轴旋转一周而成的立体的体积



 

设函数 $f(x)$ 在闭区间 $[0,1]$ 上连续,在开区间 $(0,1)$ 内可导,且
$$
f(0)=f(1)=0, f\left(\frac{1}{2}\right)=1 .
$$

证明: 必定存在 $\xi \in(0,1)$ ,使得 $f^{\prime}(\xi)=1$.



 

设 $g(0)=0, g^{\prime}(0)=1$ ,分析
$$
f(x)=\left\{\begin{array}{l}
g(x) \sin \left(\frac{1}{x}\right), x>0, \\
g(x) \cos x, x \leq 0
\end{array}\right.
$$

在 $x=0$ 处的连续性和可导性.



 

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与