考研数学
重点科目
其它科目

科数网

2024高等数学上期末

试题

单选题 (共 6 题 ),每题只有一个选项正确
设 $[x]$ 表示不超过 $x$ 的最大整数,则 $x=0$ 是函数 $f(x)=\mathrm{e}^{-\frac{[x]}{x}}$ 的
$\text{A.}$ 跳跃间断点 $\text{B.}$ 可去间断点 $\text{C.}$ 无穷型间断点 $\text{D.}$ 无限振荡型间断点

曲线 $y=x \ln \left(\mathrm{e}+\frac{1}{x}\right) \quad(x>0)$ 的渐近线条数为
$\text{A.}$ 0 $\text{B.}$ 1 $\text{C.}$ 2 $\text{D.}$ 3

设 $1 < x < 3$, 则极限 $\lim _{n \rightarrow \infty} \sqrt[n]{2024+x^n+x^{2 n}+\frac{1}{3^n} x^{3 n}}=$
$\text{A.}$ 1 $\text{B.}$ $x$. $\text{C.}$ $x^2$. $\text{D.}$ $\frac{x^3}{3}$.

已知 $a_n=\frac{(-1)^{[\cos 2 n]}}{n}$, 其中 $n$ 为正整数, $[\cos 2 n]$ 表示不超过 $\cos 2 n$ 的最大整数, 则数列 $\left\{a_n\right\}$
$\text{A.}$ 有最大值 $\frac{1}{2}$, 有最小值 -1 . $\text{B.}$ 有最大值 1 , 有最小值 $-\frac{1}{3}$. $\text{C.}$ 有最大值 1 , 有最小值 $-\frac{1}{2}$. $\text{D.}$ 有最大值 $\frac{1}{3}$, 有最小值 -1 .

设 $f(x), g(x)$ 在 $[a, b]$ 上连续, 关于 $f(x), g(x)$ 的定积分有以下命题
(1) 若 $f(x) \geqslant 0$ 且不恒等于 0 , 则 $\int_a^b f(x) \mathrm{d} x>0$
(2) 若 $f(x) \geqslant 0$, 且 $\int_a^b f(x) \mathrm{d} x=0$, 则 $f(x) \equiv 0$
(3) 若 $f(x) \leqslant g(x)$ 且存在 $x_0 \in[a, b]$ 使 $f\left(x_0\right) < g\left(x_0\right)$, 则 $\int_a^b f(x) \mathrm{d} x < \int_a^b g(x) \mathrm{d} x$
(4) 若 $f(x) \leqslant g(x)$ 且 $\int_a^b f(x) \mathrm{d} x=\int_a^b g(x) \mathrm{d} x$, 则 $f(x) \equiv g(x)$以上命题中正确的个数为
$\text{A.}$ 1 $\text{B.}$ 2 $\text{C.}$ 3 $\text{D.}$ 4

设 $F(x)=\int_x^{x+2 \pi} \mathrm{e}^{\sin t} \sin t \mathrm{~d} t$, 则 $F(x)$
$\text{A.}$ 为正常数. $\text{B.}$ 为负常数. $\text{C.}$ 恒为零. $\text{D.}$ 不为常数.

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与