单选题 (共 5 题 ),每题只有一个选项正确
已知一射手在唡次独立射击中至少命中目标一次的概率为 0.96 , 则该射手每次射击的命中率为
$\text{A.}$ 0.04
$\text{B.}$ 0.2
$\text{C.}$ 0.8
$\text{D.}$ 0.96
设随机变量 $X$ 啒从犙数为 $\lambda$ 的泊松分布, 且满足 $P\{\dot{X}=1\}=\frac{2}{3} P\{X=3\}$, 则 $\lambda=$
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
设二维随机变量 $(X, Y)$ 的分布律
则 $P\{X+Y \leq 1\}=$
$\text{A.}$ 0.4
$\text{B.}$ 0.3
$\text{C.}$ 0.2
$\text{D.}$ 0.1
设 $x_1, x_2, \cdots, x_n$ 是来自正态总体 $N\left(\mu, \sigma^2\right)$ 的样本, $\bar{x}, s^2$ 分别为样本均值和样本方差,则 $\frac{(n-1) s^2}{\sigma^2} \sim$
$\text{A.}$ ${\chi}^2(n-1)$
$\text{B.}$ $\chi^2(n)$
$\text{C.}$ $t(n-1)$
$\text{D.}$ $t(n)$
设随机变量 $X_1, X_2, \cdots, X_{100}$ 独立同分布, $E\left(X_i\right)=0, D\left(X_1\right)=1, i=1,2, \cdots, 100$,则由中心极限定理得 $P\left\{\sum_{i=1}^{100} X_i \leq 10\right\}$ 近似于
$\text{A.}$ 0
$\text{B.}$ $\Phi(1)$
$\text{C.}$ $\Phi(10)$
$\text{D.}$ $\Phi(100)$
填空题 (共 1 题 ),请把答案直接填写在答题纸上
掷一颗骰子, $A$ 表示 “出现奇数点”, $B$ 表示 “点数不大于 3 ”, 则 $A-B$ 表示