考研数学
重点科目
其它科目

科数网

tt

数学

单选题 (共 3 题 ),每题只有一个选项正确
设随机事件 $A, B, C$ 两两独立, 且 $P(A)=P(B)=\frac{1}{2}, P(C)=\frac{1}{3}, P(A B \mid C)=\frac{1}{3}$, 则在 $A$ 不发生的条件下 $B$ 与 $C$ 都发生的概率是
$\text{A.}$ $\frac{1}{2}$ $\text{B.}$ $\frac{1}{3}$ $\text{C.}$ $\frac{1}{6}$ $\text{D.}$ $\frac{1}{9}$

设二维随机变量 $(X, Y) \sim N(0,0 ; 1,1 ; 0), U=a X+b Y, V=c X+d Y$, 其中 $a, b, c, d$ 为实 数, 则 $(U, V) \sim N(0,0 ; 1,1 ; 0)$ 是 $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ 为正交矩阵的
$\text{A.}$ 充分必要条件 $\text{B.}$ 充分非必要条件 $\text{C.}$ 必要非充分条件 $\text{D.}$ 非充分非必要条件

设 $X_1, X_2, \cdots, X_n(n>1)$ 是来自总体 $X \sim N\left(\mu, \sigma^2\right)$ 的简单随机样本, 其中 $\mu$ 末知, $\bar{X}$ 是 样本均值, 则以下四个选项中期望是 $\sigma^2$ 的统计量的是
$\text{A.}$ $\frac{1}{n} \sum_{i=1}^n\left(X_i-\bar{X}\right)^2$ $\text{B.}$ $\frac{1}{n} \sum_{i=1}^n\left(X_i-\mu\right)^2$ $\text{C.}$ $\frac{1}{n-1} \sum_{i=1}^{n-1}\left(X_{i+1}-X_i\right)^2$ $\text{D.}$ $\frac{1}{2(n-1)} \sum_{i=1}^{n-1}\left(X_{i+1}-X_i\right)^2$

填空题 (共 2 题 ),请把答案直接填写在答题纸上
对一正态总体 $X \sim N\left(\mu, \sigma^2\right), \mu, \sigma^2$ 均末知, 共测量 16 次, 得到样本均值为 $\bar{x}=10.6$ 和标 准差为 $s=1.2$ 。设以下显著性水平均为 $0.05$, 检验假设 $H_0: \mu=10 ; H_1: \mu \neq 10$, 是否拒绝 $H_0$ ? 说明理由: ;检验假设 $H_0: \sigma^2 \geq 1 ; H_1: \sigma^2 < 1$ , 是否拒绝 $H_0$ ? 说明理由:

设随机变量 $X$ 和 $Y$ 相互独立, $X \sim B\left(1, \frac{1}{2}\right), Y \sim P(1), Z=\left\{\begin{array}{l}0, X=0, \\ Y, X=1,\end{array}\right.$ 则 $X$ 与 $Z$ 的相关
系数为

解答题 (共 1 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
一盒中有 6 个红球 5 个白球, 每次同时从中取 2 球, 不放回取 2 次。 $X, Y$ 分别 为第 1,2 次取到的红球数, 求 (1) $X$ 的分布律; (2) $X$ 的分布函数; (3) $P(Y=1)$

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与