单选题 (共 6 题 ),每题只有一个选项正确
已知 $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{(x-a)^2}=-1$, 则在 $x=a$ 处
$\text{A.}$ $f(x)$ 可导, 且 $f^{\prime}(a) \neq 0$.
$\text{B.}$ $f(x)$ 取极大值.
$\text{C.}$ $f(x)$ 取极小值.
$\text{D.}$ $f(x)$ 导数不存在.
设函数 $f(x)$ 在 $(-\infty,+\infty)$ 上可导, 则下列说法中正确的是
$\text{A.}$ 如果 $\lim _{x \rightarrow \infty} f(x)=0$, 则 $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$
$\text{B.}$ 如果 $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$, 则 $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=0$
$\text{C.}$ 如果 $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$, 则 $\lim _{x \rightarrow \infty} f(x)$ 存在
$\text{D.}$ 如果 $\lim _{x \rightarrow \infty} \frac{f(x)}{x}=0$, 则 $\lim _{x \rightarrow \infty} f^{\prime}(x)=0$
当 $x \rightarrow 0$ 时, $x-\ln \left(x+\sqrt{1+x^2}\right) \sim c x^k$, 则 $c, k$ 分别是
$\text{A.}$ $\frac{1}{3}, 3$.
$\text{B.}$ $\frac{1}{6}, 3$.
$\text{C.}$ $\frac{1}{3}, 2$.
$\text{D.}$ $\frac{1}{6}, 2$.
设常数 $a>0$, 若当 $x \in(1,+\infty)$ 时, $\ln x \leqslant x^a$, 则
$\text{A.}$ $a \geqslant \mathrm{e}$.
$\text{B.}$ $a \geqslant \frac{1}{\mathrm{e}}$.
$\text{C.}$ $0 < a < $ e.
$\text{D.}$ $0 < a < \frac{1}{\mathrm{e}}$.
设函数 $f(x)$ 可导, $g(x)=\left\{\begin{array}{ll}x^2 \sin \frac{1}{|x|}+\frac{1}{|x|} \sin ^2 x, & x \neq 0 \\ 0, & x=0\end{array}, F(x)=f[g(x)]\right.$,
则 $F(x)$ 在 $x=0$ 点可导的充分必要条件是
$\text{A.}$ $f^{\prime}(0)=0$.
$\text{B.}$ $f^{\prime}(0) \neq 0$.
$\text{C.}$ $f(0)=0$.
$\text{D.}$ $f(0) \neq 0$.
点 $x=0$ 是函数 $f(x)=\frac{|x|}{x}$ 的
$\text{A.}$ 连续点
$\text{B.}$ 可去间断点
$\text{C.}$ 跳跃间断点
$\text{D.}$ 第二类间断点