一、解答题 ( 共 2 题,满分 80 分,解答过程应写出必要的文字说明、证明过程或演算步骤 )
求三重积分 $I=\iiint_{\Omega} z \cdot \sqrt{x^2+y^2} \mathrm{~d} x \mathrm{~d} y \mathrm{~d} z$ ,其中 $\Omega$ 为 $y=\sqrt{2 x-x^2}$ 及平面 $z=0, z=a,(a>0)$ 和 $y=0$ 所围成的区域.
已知 $u$ 是关于 $x, y$ 的函数,且满足:
$u=f(x, y, z, t), g(y, z, t)=0, h(z, t)=0 .$
求 $\frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}$.