单选题 (共 3 题 ),每题只有一个选项正确
设 $f^{\prime}(x)$ 在 $x=a$ 处连续, 且 $\lim _{x \rightarrow a} \frac{\sin (x-a)}{f^{\prime}(x)}=-1$, 则
$\text{A.}$ $x=a$ 是 $f(x)$ 的极小值点.
$\text{B.}$ $x=a$ 是 $f(x)$ 的极大值点.
$\text{C.}$ $(a, f(a))$ 是曲线 $y=f(x)$ 的拐点.
$\text{D.}$ $f^{\prime}(x)$ 在 $x=a$ 的邻域内单调.
$x=0$ 是函数 $f(x)=\arctan \frac{1}{x}$ 的
$\text{A.}$ 可去间断点
$\text{B.}$ 跳跃间断点
$\text{C.}$ 连续点
$\text{D.}$ 无穷间断点
若 $f(x)=\int_0^{2 x} t \sin (x-t)^2 \mathrm{~d} t$, 则 $f^{\prime \prime}\left(\sqrt{\frac{\pi}{2}}\right)=$
$\text{A.}$ 1
$\text{B.}$ 2
$\text{C.}$ 3
$\text{D.}$ 4
解答题 (共 3 题 ),解答过程应写出必要的文字说明、证明过程或演算步骤
设 $f(x)$ 在 $[a, b]$ 上可导, 且满足 $f_{+}^{\prime}(a) < c < f_{-}^{\prime}(b)$, 证明: 存在 $\xi \in(a, b)$, 使得 $f^{\prime}(\xi)=c$.
计算不定积分: $\int \frac{(1-x)^3}{x^2} d x$ 。
设 $\lim _{x \rightarrow 0} \frac{\mathrm{e}^{a x}-\frac{1+b x}{1+2 x}}{1-\sqrt{1-x^2}}=-4$, 求 $a, b$.