考研数学
重点科目
其它科目

科数网

大一上试卷具体名称

数学

单选题 (共 6 题 ),每题只有一个选项正确
当 $x \rightarrow 0^{+}$时, $(1+x)^{\frac{1}{x}}-\left(e+a x+b x^2\right)$ 是比 $x^2$ 高阶的无穷小, 则
$\text{A.}$ $a=\frac{e}{2}, b=-\frac{11}{24} e$. $\text{B.}$ $a=-\frac{e}{2}, b=\frac{11}{24} e$. $\text{C.}$ ${a}={e}, {b}=\frac{{e}}{2}$. $\text{D.}$ ${a}={e}, {b}=-\frac{{e}}{{2}}$.

设函数 $f(x)=\left\{\begin{array}{cc}g(x) \cos \frac{1}{x^2}, & x \neq 0, \\ 0, & x=0,\end{array}\right.$ 且 $g(0)=g^{\prime}(0)=0$, 则 $f(x)$ 在点 $x=0$ 处
$\text{A.}$ 连续但不可导. $\text{B.}$ 可导但 $f^{\prime}(0) \neq 0$. $\text{C.}$ 极限存在但不连续. $\text{D.}$ 可微且 $\left.\mathrm{d} f(x)\right|_{x=0}=0$.

设曲线 $L: y=f(x)$, 其中 $f(x)$ 为连续函数, $f^{\prime}(x)$ 的图象如图所示, 则
$\text{A.}$ $f(x)$ 有一个极大值点, 两个极小值点, 曲线 $y=f(x)$ 有两个拐点 $\text{B.}$ $f(x)$ 有两个极大值点, 一个极小值点, 曲线 $y=f(x)$ 有两个拐点 $\text{C.}$ $f(x)$ 有一个极大值点, 一个极小值点, 曲线 $y=f(x)$ 有两个拐点 $\text{D.}$ $f(x)$ 有两个极大值点, 一个极小值点, 曲线 $y=f(x)$ 有一个拐点

$\lim _{x \rightarrow 0} \frac{\ln \left(1+\tan ^2 x\right)-x^2}{x^4}$
$\text{A.}$ 1 $\text{B.}$ 1/2 $\text{C.}$ 1/6 $\text{D.}$ 1/4

设 $f^{\prime}(x)$ 在 $x=a$ 处连续, 且 $\lim _{x \rightarrow a} \frac{\sin (x-a)}{f^{\prime}(x)}=-1$, 则
$\text{A.}$ $x=a$ 是 $f(x)$ 的极小值点. $\text{B.}$ $x=a$ 是 $f(x)$ 的极大值点. $\text{C.}$ $(a, f(a))$ 是曲线 $y=f(x)$ 的拐点. $\text{D.}$ $f^{\prime}(x)$ 在 $x=a$ 的邻域内单调.

设 $f(x)=\frac{\ln |x|}{|x-1|} \sin x$, 则 $f(x)$ 有
$\text{A.}$ 两个可去间断点. $\text{B.}$ 两个无穷间断点. $\text{C.}$ 一个可去间断点, 一个跳跃间断点. $\text{D.}$ 一个可去间断点,一个无穷间断点.

他的试卷

试卷二维码

分享此二维码到群,让更多朋友参与